
Vessel Container Format

Abstract
This document describes a generic container file format suitable for authoring content
collaboratively, both in real-time or with eventual merging. It is suitable for encapsulating an
authoritative view of the resource, or managing multiple diverging versions. Confidentiality and
authentication of content are both supported.

Workgroup:
Internet-Draft:
Published:
Intended Status:
Expires:
Author:

Interpeer Project
draft-jfinkhaeuser-vessel-container-format-00
28 July 2023
Informational
29 January 2024
J. Finkhaeuser
Interpeer

This document is currently not, in this form, submitted as an Internet-Draft. Any statements
below that suggest this and assign copyright to the IETF are automatically added boilerplate and
should be ignored. This notice will be removed if submission occurred.

About This Document
This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at . Status information for
this document may be found at

.

Discussion of this document takes place on the interpeer Working Group mailing list
(), which is archived at

. Subscribe at . Working Group
information can be found at .

Source for this draft and an issue tracker can be found at .

The RFC Editor will remove this note

https://specs.interpeer.io/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-vessel-

container-format/

mailto:interpeer@lists.interpeer.io https://lists.interpeer.io/pipermail/
interpeer/ https://lists.interpeer.io/mailman/listinfo/interpeer

https://interpeer.io/

https://codeberg.org/interpeer/specs

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .https://datatracker.ietf.org/drafts/current/

Finkhaeuser Expires 29 January 2024 Page 1

https://specs.interpeer.io/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-vessel-container-format/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-vessel-container-format/
mailto:interpeer@lists.interpeer.io
https://lists.interpeer.io/pipermail/interpeer/
https://lists.interpeer.io/pipermail/interpeer/
https://lists.interpeer.io/mailman/listinfo/interpeer
https://interpeer.io/
https://codeberg.org/interpeer/specs
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 January 2024.

Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

This document may not be modified, and derivative works of it may not be created, except to
format it for publication as an RFC or to translate it into languages other than English.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Objectives

1.2. Scope

1.3. Previous Work

2. Conventions and Definitions

2.1. Terminology

2.1.1. Pseudo-Code Conventions

3. Specification of Vessel

3.1. Algorithms

3.2. Versioning of Extent Metadata

3.2.1. Version Tag Algorithm

3.3. Extents

3.3.1. Envelope

3.3.2. Header

3.3.3. Payload

3.3.4. Footer

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 2

https://trustee.ietf.org/license-info

3.3.5. Full Extent Layout

3.4. Sections

3.4.1. Fixed-Sized Sections

3.4.2. Variable-Sized Sections

3.4.3. Section Fields

3.4.4. Topics

3.4.5. Predefined Sections

3.5. Extent Identifiers

3.5.1. Deterministic Ordering

3.6. Authoring

3.6.1. Author Identifiers

3.6.2. Authoring Counter

3.7. Confidentiality

3.7.1. Encrypt-then-Sign

3.7.2. Sign-then-Encrypt

3.7.3. Sign-then-Encrypt-then-Sign

3.7.4. Encrypted Extent Parts

3.8. Minimum Supported Algorithms

3.8.1. Hash Functions

3.8.2. Public/Private Key Pairs

3.8.3. Asymmetric Signature Algorithm

3.8.4. Message Authentication Codes

3.8.5. Symmetric Encryption

3.8.6. Signature Algorithm

3.8.7. Nonce Generation

4. Related Considerations

4.1. Human Rights Considerations

4.1.1. In Scope

4.1.2. Out of Scope

4.2. Protocol Considerations

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 3

4.3. Security Considerations

4.3.1. Confidentiality

4.3.2. Data Integrity

4.3.3. Peer Entity Authentication

4.3.4. Non-Repudiation

4.3.5. Unauthorized Usage

4.3.6. Inappropriate Usage

4.3.7. Denial of Service

4.3.8. Replay Attacks

4.3.9. Message Insertion

4.3.10. Message Deletion

4.3.11. Message Modification

4.3.12. Man-In-The-Middle

4.3.13. Key Usage

4.4. Privacy Considerations

4.4.1. Surveillance

4.4.2. Stored Data Compromise

4.4.3. Intrusion

4.4.4. Misattribution

4.4.5. Correlation

4.4.6. Identification

4.4.7. Secondary Use

4.4.8. Disclosure

4.4.9. Exclusion

4.5. IANA Considerations

5. References

5.1. Normative References

5.2. Informative References

Acknowledgments

Index

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 4

Author's Address

1. Introduction
Human rights considerations increasingly and rightly influence technology design decisions.
IRTF has issued on this matter, with ongoing research intending to update this
document with .

This document is concerned with data storage and transfer under human rights considerations.
To this end, it specifies a container resource format and associated operations for encapsulating
arbitrary data in such a way that human rights are protected.

The above may require unpacking. There are two underlying assumptions to this:

Internet technologies exist to transfer data, and data transfer usually (but not necessarily)
implies data storage.
Some human rights considerations in the digital sphere involve security concerns; when
applied to data storage, these are predominantly data privacy concerns.

This suggests that some human rights concerns are best addressed at the data storage layer, prior
to transfer. Note well that while this may lower the burden on data transfer, it does not imply that
data transfer can be oblivious to such concerns.

The above view takes into account the position expressed in that security be
implemented, even if end users decide to disable it. Furthermore, it focuses on the "content
exfiltration" attack class described in .

Several solutions exist for cryptographically securing data at rest. But as correctly
points out, sometimes cryptographic solutions make assumptions that negatively impact other
human rights. For example, strong authentication may impact the rights imparted by anonymous
or pseudonymous operations. Care must be taken to balance such concerns.

The Vessel container format aims to provide a resource format and associated operations for
securing arbitrary data in such a way that as many human rights concerns as possible are taken
into account, which in practice means providing confidentiality through encryption (
declares that "Encryption is a key enabler of privacy and security online and is essential for
safeguarding rights, including the rights to freedom of opinion and expression, freedom of
association and peaceful assembly, security, health and non- discrimination").

The aim of this format is to enable real-time and eventually consistent applications where
content is created by multiple authors.

Encodings similar to Vessel already exist and are in use by applications and protocols such as
GNUNet, BitTorrent, Freenet , Gnutella, ERIS and others. However, none of them
specifically target human rights considerations or fall short in addressing them, or are tied to

[RFC8280]
[I-D.draft-irtf-hrpc-guidelines-13]

1.

2.

[RFC3365] MUST

[RFC7624]

[RFC8280]

[UNHRC51]

[FREENET] [ERIS]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 5

their respective protocols and applications. Vessel defines an encoding independent of any
specific protocol or application and decouples storage from transport (protocol considerations,
however, are addressed in Section 4.2). Vessel may be seen as a modest step towards Information-
Centric Networking .[RFC7927]

Human Rights Preservation:

Availability:

Middle-box Deniability:

Deterministic Identifiers:

Multi-Authoring:

Storage Efficiency:

Simplicity:

Completeness:

Sequence Correctness:

Verifiability:

Real-Time Capabilities:

1.1. Objectives
The objectives in the design of Vessel are:

As outlined above, this is the main objective; for an analysis on
how this is achieved, see Section 4.1.

Content encoded with Vessel can be easily replicated and cached to increase its
availability.

Intermediary peers, who transport or cache (store) Vessel extents and
do not have access to content encryption keys cannot access the plain text content.

Identifiers are always deterministic. In particular, this aids multi-
authoring.

Multiple authors should not interfere with each other or require coordination
when adding to the same Vessel resource. Note that applications may need to implement
additional precautions when implementing multi-authoring, but Vessel prevent
this.

Vessel can be used to encode small content as well as large content with
reasonable storage overhead. Care is additionally taken to align Vessel resources well with file
system blocks, as far as that can be predicted.

The encoding should be as simple as possible in order to allow correct
implementation on various platforms and in various languages.

Given a sequence of extents, it is possible to determine whether this sequence is
complete (up to its latest entry).

Given a set of extents, it is possible to determine the order in which they
must be put into sequence.

We refer to the combination of completeness, sequence correctness, integrity and
authenticity as verifiability; that is, an extent is verifiable if the above criteria can be ensured.

Extents must be sized such that real-time applications such as for e.g.
video streaming are feasible.

MUST NOT

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 6

1.2. Scope
Vessel describes how arbitrary data can be encoded into a sequence of extents, in such a way
that the sequence is deterministic even as multiple authors contribute to it in parallel. Each
extent's authenticity can be proven, and its contents may remain confidential. Finally, content
can also be deleted.

Vessel does not prescribe how extents should be stored or transported over a network. Some
considerations on how transport protocols may be used are provided in Section 4.2.

The main aim is to preserve human rights in the storage and transport of data. This is partially
reflected in the design of Vessel itself, but some considerations must be outside the scope of this
specification. Section 4.1 provides an analysis, and Section 4.4 and Section 4.3 expand upon this
with regards to privacy and security related concerns.

Vessel is an attempt to find a minimal common basis upon which higher functionality can be
built.

Multi-authoring is supported by Vessel, but the specifics of distributing authorization tokens for
this are out of scope, and need to be developed in a future specification.

Vessel is not intrinsically tied to the use of any specific cryptographic algorithms, but provides a
simple means for specifying them. This specification defines a set of default algorithms that any
implementation provide, however.MUST

1.3. Previous Work
Vessel draws on the general idea of chunking content into extents as practiced by many peer-to-
peer protocols; however, the actual design has no specific basis.

In the course of designing this, some alternative approaches such as and were
analysed. Neither, however, adequately address content deletion for the purposes of human
rights preservation. ERIS does not address deletion whatsoever; content blocks are immutable, as
addressing occurs based on content hashes. DMC builds upon ERIS, and provides means by
which blocks may be included in or excluded from the container index. Blocks excluded in this
manner should be garbage collected by well-behaving nodes, but there is not much preventing a
node from misbehaving. See Section 4.4 for some more details on this.

[ERIS] [DMC]

2. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 7

In order to respect inclusive language guidelines from and
, this document uses plural pronouns.

[NIST.IR.8366] [I-D.draft-knodel-
terminology-10]

Sector:

Block:

Extent:

Resource:

Origin Extent:

Envelope:

Payload:

Section:

(Sub-)Stream:

Key:

Key Pair:

Ownership (Key Pair):

Authoring (Key Pair):

2.1. Terminology

Physical addressing of block storage devices often involves the use of so-called sectors ;
a sector has a unique offset (within its enclosing scope) and addresses a sequence of octets.

On the file system layer, sectors are typically mapped into blocks . That is, each logical
block in a file system encompasses one or more physical sectors on the block storage device.
Similar to sectors, blocks are addressed with an offset from the start of the file system's
storage area.

An extent is a self-contained section of a Vessel resource; a single extent constitutes a
fully-formed Vessel resource, but a resource may contain multiple extents.

In Vessel encoding, a resource consists of one or more extents.

The origin extent is the first extent authored for a new resource.

The leading and trailing metadata in an extent together form its envelope .

The extent content, distinct from its envelope, is termed the payload .

Extent payloads are subdivided into sections , each of which may contain data for
distinct application concerns.

A stream is defined as the sequence of sections, derived from the sequence of
extents, that all pertain to the same application concern.

A cryptographic key , permitting operations such as signing, verifying, encrypting or
decrypting content.

A public and a private key used in asymmetric cryptography. The public key can be
used to verify and encrypt content, the private to sign and decrypt content. Possession of the
full key pair is equivalent of being in possession of an authoring identity.

The key pair that is used to author the origin extent. This ownership key
pair has the special property that it is authoritative with regards to authorizing other key
pairs.

The key pair(s) used to author extents following the origin extent.

Character and String Literals:

2.1.1. Pseudo-Code Conventions

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 8

Concatenation:

Function Calls:

Truncation:

Size:

Names:

We quote single characters in single quotes (') and character strings in double quotes (").
Characters and strings may be encoded in different encodings; this is noted in the
surrounding text. Typically, we use ASCII for text used within the specification itself, and
UTF-8 for application provided text.

We use the pipe character (|) to denote concatenation.

Function calls are represented as the majority of programming languages
implement them, with a function name, and parameters enclosed by an opening and closing
bracket pair (). Parameters are delimited by commas (,), e.g. foo(bar, baz).

When we discuss truncating octet sequences in this document, we assume a
pseudo-code function truncate(input, size) exists that returns the first size octets from the input
octet sequence.

Pseudo-code furthermore assumes the existence of a length() function that returns the
length of a given field, or octet sequence, etc.

Similar to the size function, a name() function is assumed that returns canonical names
for algorithm choices.

[RFC3629]

3. Specification of Vessel
Vessel defines a container format for storing arbitrary data such that it may be encrypted at rest,
but also transmitted in an efficient manner. Its properties are designed to help protect human
rights concerns; see Section 4.1 for details.

To this end, Vessel chunks data into fixed-sized extents, each of which contain some meta
information as well as content sections. Each section is scoped to a particular purpose. This
permits interleaving sections dedicated to different concerns; in this manner, applications may
leverage the facilities provided by Vessel to mix processing metadata with application data, or
multiple related data types, such as audio and video. All sections relating to a single concern are
called a stream.

The Vessel specification is somewhat generic with regards to the choice of cryptographic
algorithms. We therefore provide version fields in the envelope for implementations to
gracefully adjust to the specific implementation used in a resource.

3.1. Algorithms
The cryptographic algorithms used in this specification may change, but their use does not.
Throughout the document, we will therefore use generic names, and only provide the choices
implementations provide and their defaults afterwards, in Section 3.8.

The following algorithms are required:

MUST

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 9

Version Tag Hash:

Extent Identifier Hash:

Author Identifier Hash:

Nonce Hash:

Public/Private Key Pair:

Asymmetric Signature Algorithm:

Key Exchange Algorithm:

Symmetric Encryption:

Message Authentication Code:

Signature Algorithm:

Signature Hash:

Private Header:

A version tag hash function is required for generating version tags.

Similarly, a extent identifier hash function is needed for creating extent
identifiers.

Depending on the choice of authoring key pair, an author identifier
hash function for effectively truncating longer keys into a fixed size may be necessary.

In order to provide fixed length nonces for other cryptographic operations, a
nonce hash function is required.

A public/private key pair enables asymmetric cryptographic
operations. Such key pairs typically enable different algorithms, such as for signatures or key
exchanges.

Asymmetric signature algorithms are the main use of key
pairs in this specification, though key exchange algorithms are likely required for additional
sections not covered explicitly here.

Key pairs also enable two or more parties to securely exchange key
material for symmetric encryption. This specification does not use key exchange algorithms,
but needs to consider their use.

Encrypting extent payloads for confidentiality requires a symmetric
block cipher algorithm .

We may require a message authentication code function (MAC)
to authenticate extent content.

The extent signature algorithm may be a message authentication code
based scheme, or a public key signature based scheme. If the former, we describe a MAC
algorithm here. If the latter, it is identical to the asymmetric signature algorithm choice above.

Some signature algorithms require the use of a specific hash function, while
others permit some selection here. Vessel defines this as the signature hash function

Some uses of this container format may make it desirable to hide some header
information from in-path nodes. Such uses should set a private header flag.

Note that it is perfectly legitimate to use e.g. the same hash function for all of the different types
of hash functions above.

Many of these algorithms are used in the calculation of a version tag (Section 3.2). This document
refers to them in pseudocode as symbols.

Algorithm Name Pseudocode Symbol

Version tag hash version_tag_hash

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 10

Algorithm Name Pseudocode Symbol

Extent identifier hash extent_identifier_hash

Author identifier hash author_identifier_hash

Nonce hash nonce_hash

Signature Hash signature_hash

Asymmetric Signature Algorithm asymmetric_signature_algorithm

Message authentication code message_authentication

Symmetric Encryption symmetric_encryption

Signature Algorithm signature_algorithm

Table 1: Pseudocode Symbols

3.2. Versioning of Extent Metadata
Vessel distinguishes between two versions, both of which be present in the envelope.

The Envelope Version is a numeric value which describes the layout of the extent envelope.
In this version, it is defined to be a NULL octet (all bits zero). Future specification versions

 update this value if and only if the envelope layout changes.
The Version Tag is a octet sequence that describes both the remainder of the extent layout, as
well as the cryptographic algorithms used.

MUST

1.

MUST

2.

3.2.1. Version Tag Algorithm

The algorithm for generating the version tag is relatively simple: concatenate all the choices of
algorithms by their canonical identifier, separated by a semi-colon ; (U+003B) and apply the

version tag hash function. Then concatenate the string "Vessel" with the output of the prior
function invocation, and apply the version tag hash function again. Of the result, use as many
octets from the start as the version tag requires.

The canonical identifiers are listed in Section 3.8. They are all ASCII text, such that no other
character set considerations are necessary.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 11

Given the relatively low number of possible inputs to this scheme, even a truncated hash has a
high likelihood of remaining collision free. At the same time, the algorithm is simple enough to
be implemented on many platforms. It also is strictly deterministic. The scheme is also
sufficiently future proof. Addition of more algorithms is well supported by simply appending
them to the concatenation list.

Note that implementations treat all strings and individual characters in this algorithm as
ASCII encoded.

The signature_algorithm is a reference to one of the other algorithms only. Its possible values
have special meaning, as described in Section 3.8.6.
Conversely, the private_header_flag may only be one of two special words, ph=0 or ph=1
respectively, where ph stands for "private header", and a value of zero (0) indicates that
private headers are not used, while a value of one (1) shows that they are.

Figure 1: Pseudocode for Version Tag

algorithms = name(version_tag_hash) |
 ';' | name(extent_identifier_hash) |
 ';' | name(author_identifier_hash) |
 ';' | name(nonce_hash) |
 ';' | name(signature_hash) |
 ';' | name(asymmetric_signature) |
 ';' | name(message_authentication) |
 ';' | name(symmetric_encryption) |
 ';' | name(signature_algorithm) |
 ';' | private_header_flag

pre_hash = version_tag_hash(algorithms)

hash = version_tag_hash("Vessel" | pre_hash)

version_tag = truncate(hash, length(version_tag))

MUST

•

•

3.2.1.1. Version Tag Example
An example version tag may help illustrate the above algorithm. Below, the hash sign (#) is used
to indicate a code comment that the pseudo code would ignore.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 12

Figure 2: Pseudocode Example for Version Tag

algorithms = "sha3-512" | # name(version_tag_hash)
 ';' "sha3-512" | # name(extent_identifier_hash)
 ';' "none" | # name(author_identifier_hash)
 ';' "sha3-512" | # name(nonce_hash)
 ';' "eddsa" | # name(signature_hash)
 ';' "ed25519" | # name(asymmetric_signature)
 ';' "kmac128" | # name(message_authentication)
 ';' "chacha20" | # name(symmetric_encryption)
 ';' "aead" | # name(signature_algorithm)
 ';' "ph=1" # private_header_flag
Results in:

"sha3-512;sha3-512;none;sha3-512;eddsa;ed25519;kmac128;chacha20;ae
ad;ph=1"

pre_hash = version_tag_hash(algorithms)

hash = version_tag_hash("Vessel" | pre_hash)

version_tag = truncate(hash, length(version_tag))
Results in (hexadecimal): f8059ab6

Extended Compliance:

3.2.1.2. Version Tag Permutations
The number of permutations for all the supported combinations of functions in this document is
not too large for a lookup table, but may be too large for the particular implementation's target
platform. This is why only a subset of these algorithms are required, with the rest remaining
optional.

The number of permutations resulting from only implementing the required algorithms is
significantly lower, but is still large enough that lookup of the required functions may pose some
overhead.

Being a container format and not a protocol, Vessel has no means for negotiating algorithms
between the extent authoring and the extent consuming parties. The choice of algorithms
therefore must be encoded into the extent by the author.

At the same time, leaving variable space in an envelope for algorithm specification complicates
the overall specification, and makes parsing more brittle.

Using a truncated hash for the version tag is the right choice here, but excluding e.g. memory
limited platforms is not desirable.

For this reason, this specification prvoides for three different compliance profiles:

Applications provide extended compliance if they implement all
combinations of algorithms in this specification.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 13

Full Compliance:

Limited Compliance:

Applications provide full compliance if they implement only the mandatory
algorithms, i.e. those denoted by the key word .

Applications provide limited compliance if they implement only a subset
of the mandatory algorithms.

Limited compliance applications strictly speaking violate this specification, according to the use
of key words in . This specification disagrees, but only with respect to the supported
algorithm choices. Here, the key words indicate what is required for full or extended compliance.
The remainder of the document uses the key words according to (and).

Applications aim for full compliance, but provide only limited compliance if
platform constraints or intended usage dicate such a choice.

Additionally, applications produce only a strictly limited number of distinct version tags.
The larger choice of algorithms is aimed more at fostering compatibility when reading extents.

Extended compliance be an aim. The version tag is intended for the purposes of
having a compact representation of algorithm choices. Each application is likely to have need
only of a strictly limited number of permutations. Requesting full compliance in this document is
intended to foster some interoperability. But as a naive lookup table for mapping version tags to
individual algorithm identifiers may consume several hundred KiB for full compliance already, it
is clear enough that extended compliance will be out of reach for many applications.

MUST

[RFC2119]

[RFC2119] [RFC8174]

SHOULD MAY

SHOULD

SHOULD NOT

3.3. Extents
Vessel resources are subdivided into extents . An extent consists of an envelope, a header, a
footer, and a payload. The envelope's layout is defined by the envelope version, the remainder by
the version tag.

A single extent is a complete Vessel resource. Resources may contain multiple extents. The order
in which extents occur within a resource has no bearing on the logical order of extents, which is
fully deterministic. Of course, implementations write extents into a resource file in
logical order, but choose different ordering e.g. to optimize access or storage.

Implementations rely on resource hashing for resource identity. Instead, the origin
extent's identifier be used for the identify of the entire resource. Implementations
instead opt to treat resource identity separately, only referring to the origin extent in a resolution
step.

Extents should align well with block boundaries provided by storage systems, as well as page
sizes by operating system's memory allocation facilities. At the time of writing, the consensus
here appears to be that blocks and pages of 4096 octets are in wide-spread use across different
systems. At the same time, this is a small enough size that even embedded devices should be able
to manage this amount of data at a time. Therefore, extents be sized in multiples of 4096
octets.

SHOULD
MAY

MUST NOT
SHOULD MAY

MUST

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 14

3.3.1. Envelope

The envelope layout is as follows. Note that in the diagram below we list specific bit sizes for
fields; these are not open to interpretation and be implemented exactly as specified.

A "magic" three octet sequence consisting of ASCII values 88 ('X'), 69 ('E') and 86 ('V'), together
forming the string "XEV". Read backwards, "XEV" is "VEX", which may be considered
shorthand for "Vessel EXtent".
A single octet containing the envelope version (see Section 3.2).
A four octet sequence with the version tag (see Section 3.2).

A fixed-sized envelope containing all relevant versioning information is sufficient for graceful
adaptation to future specification changes. Furthermore, the envelope is long enough to serve as
a synchronization boundary for detecting extents within a octet stream.

Note again that the envelope version relates only to the layout of this envelope. The first four
octets remain fixed in size and meaning (although it is possible to change the "XEV" string
into a different one of the same size), otherwise the envelope version cannot be reliably read.

The envelope version exists primarily to permit graceful handling of future changes to the
version tag, or addition of envelope metadata.

MUST

Figure 3: Envelope Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

XEV EV

Version Tag

1.

2.
3.

MUST

3.3.2. Header

Following the envelope information, the extent header provides metadata about the extent itself.
The exact layout of the header depends on the version tag.

The primary reason for this is that the choice of different cryptographic algorithms implies
different field lengths e.g. for identifiers specified in the header. Implementations adjust to
this, for all combinations of such algorithms they support. However, implementations
deviate from the sequence of fields below.

Note that for this reason, the display sizes of 48 bits for extent and author identifiers given in this
document should be considered examples only.

MUST
MUST NOT

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 15

The extent size. This is a 16 bit unsigned integer value in big endian encoding. It specifies the
size of the extent from the beginning of the envelope to the end of the footer. The value
be interpreted as a multiplier of a nominal block size of 4096 octets, yielding possible extent
sizes from 4096 octets to 256 MiB.
The current extent identifier follows; see Section 3.5 for details.
An authoring counter follows. This is a 24 bit unsigned integer value in big endian encoding.
Authors must increment this counter for every update to any extent they make; see Section
3.6.2 for details.
The next field specifies the previous extent's identifier. If the extent is the origin extent, its
value be a sequence of NULL octets.
Following this, is the author identifier. The identifier be mappable to an authoring
key pair, to permit authentication of the extent payload. It be mappable to an
authoring key pair if an asymmetric signature algorithm is chosen to validate the extent
payload.

Figure 4: Extent Header Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Extent Size

Current Extent ID

Counter

Previous Extent ID

Author ID

1.
MUST

2.
3.

4.
MUST

5. SHOULD
MUST

3.3.3. Payload

octets following the header, up to the beginning of the footer, are extent payload.

The payload contains the application data. Though the extent size is fixed, applications may
provide arbitrary length data for encapsulation. For this reason, application data is encapsulated
in sections within the payload; see Section 3.4 for details.

Different sections may have different length, but sections either include their own length
specifier, or the version tag information provides an indication of the section length. Thus the
payload consists of zero or more sections, each of which has a determinate length.

If the total length of all sections is less than the size of the payload area (the size of the extent
minus the size of envelope, header and footer), then the remainder of the payload area be
filled with padding octets.

MUST

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 16

3.3.3.1. Padding
For padding, we use a variation of the PKCS#7 padding scheme defined in .

PKCS#7 is defined for block ciphers that typically encrypt blocks of no more than 256 octets at a
time. The padding algorithm therefore fills padding octets with a value equal to the padding
length. This also helps determine which parts of a decrypted plain text are padding, and which
are payload.

Due to subdividing payload into determinate length section, we do not need to distinguish
between padding and plain text - the section headers provide that distinction for us. At the same
time, a large extent that contains only a small section may contain padding that is significantly
longer than 256 octets.

We define the padding size as follows:

With this definition, the padding value is:

Finally and unlike PKCS#7, it is possible for extent payloads to contain no padding at all (zero
length).

[RFC5652]

Figure 5: Pseudocode for Padding Size Calculation

payload_size = extent_size
 - envelope_size
 - header_size
 - footer_size

padding_size = payload_size - cumulative_section_sizes

Figure 6: Pseudocode for Padding Value Calculation

padding_value = padding_size modulo 256

3.3.4. Footer

The footer contains only a signature, which verifies the entire extent. The size of the signature is
dependent on the signature algorithm scheme which is defined by the version tag, and provided
as 64 bits here for display purposes.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 17

The signature field. The range of data covered by the signature starts at the beginning of the
envelope, and ends at the end of the payload.

Signatures are calculated after potential encryption of the payload.

Figure 7: Extent Footer Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Signature

1.

3.3.5. Full Extent Layout

The full layout of an Extent is as follows; as with the identifier sizes, the payload size below is
limited to 200 bits for display purposes only.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 18

Figure 8: Combined Extent Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

XEV EV

Version Tag

Extent Size

Current Extent ID

Counter

Previous Extent ID

Author ID

Payload

Signature

3.4. Sections
Sections encode application data as well as other metadata interleaved with whatever the
application requires. In order to help distinguish one kind of section from the other, all sections
carry a type identifier.

Additionally, it is potentially necessary to logically group sections of different types. For example,
a section type carrying audio data may be required for encoding a movie, but such a movie may
be available in multiple languages. It should therefore be possible to organize related section into
a single stream . For this purpose, sections carry a topic field, which identifies the stream the
section relates to.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 19

3.4.1. Fixed-Sized Sections

Some section types imply a fixed section size. For these sections, it is not necessary to carry
additional size information, and the layout is as follows.

Figure 9: Fixed-Sized Section Header Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Topic

Section Payload

3.4.2. Variable-Sized Sections

Other sections are variable sized; this is almost certainly the case for opaque application data.

Sections can never be larger than the extent within which they are encapsulated. However,
sections need not be a multiple of 4096 octets in size as extents are.

It would be possible to encode the section size in 28 bits, but such an encoding is hard. Instead,
we use a simple variable sized encoding scheme as described in Section 3.4.3.1.

To maintain compatibility with the fixed-size section header, the section size follows the topic.

Figure 10: Variable-Sized Section Header Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type Topic

Section Size

Section Payload

3.4.3. Section Fields

The section type is a 16 bit unsigned integer in big endian encoding. Types below 1024 are
reserved; applications must specify the types they intend to use. In order for applications to
determine compatibility with any such scheme, a special content type section is used
(Section 3.4.5.4).

1.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 20

The topic is also a 16 bit unsigned integer in big endian encoding. Topics below 1024 are
reserved. The same content type section as above is used to determine application
compatibility.
If present, the section size is either 16 or 32 bits in length. The value of the first 16 bits
determines if more bits follow (Section 3.4.3.1).
The remainder of the section is section payload.

Note that the section size determines the size of the entirety of the section, not the section
payload size. This is largely to stay more consistent with the dealing with fixed sized sections; in
either case, reading the section header gives you all the information to jump from the start of the
section to its end.

2.

3.

4.

3.4.3.1. Variable-Sized Length Encoding
The variable sized length encoding for section sizes is a simple, space efficient scheme. A section
size consists of one or two words, each of which is a 16 bit, unsigned integer in big endian
encoding. The algorithm for determining the section size is as follows:

Read the first word. If the most significant bit is unset, this is the entire section size and the
algorithm terminates.
If the most significant bit of the first word is set,

unset it.
Shift the word into the most significant word of a 32 bit unsigned integer variable.
Read the next word, and assign it to the least significant word of the 32 bit unsigned
integer variable. The result is the section size.

Note that this scheme yields up to 31 bit sizes; any size larger than the extent payload are
be rejected. Since it is difficult to continue parsing an extent payload when the size of a section
cannot be determined, implementations reject the entire extent as malformed.

1.

2.

1.
2.
3.

MUST

SHOULD

3.4.4. Topics

As described in Section 3.4.3, section headers carry a 16 bit topic value. Topic values below 1024
are reserved for use in this specification or later revisions or extensions; the remainder are
application choices.

Topic Decimal Hexadecimal Reference

Authentication, Authorization and Accounting 0 0x0000 Section 3.4.4.1

Metadata 10 0x00A0 Section 3.4.4.2

Table 2: Section Topics

3.4.4.1. Topic: Authentication, Authorization and Accounting

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 21

Decimal Topic Hexadecimal Topic

0 0x0000

Table 3: Authentication Topic

The topic value for authentication, authorization and accounting (AAA) is reserved; an
appropriate scheme of sections for use in this topic is out of scope for this specification.

3.4.4.2. Topic: Metadata

Decimal Topic Hexadecimal Topic

10 0x00A0

Table 4: Metadata Topic

A topic value of ten (0x00A0) has a special meaning; it implies that the section carries extent
metadata; for this reason, the remainder of this document refers to it as the metadata topic .
Some sections only make sense relating the the extent as a whole; this topic is reserved for those
sections.

Note that if applications wish to provide sections with extent-wide meaning, they re-
use this metadata topic. Applications define their own extent-wide topic, if they so wish.

Applications may provide any kind of metadata in this topic, such as from e.g. Dublin Core terms
.

MUST NOT
MAY

[DUBLIN-CORE]

3.4.5. Predefined Sections

The following describes sections defined in this specification.

Section Decimal
Type

Hexadecimal
Type

Valid Topics Reference

CRC32 1 0x0001 Metadata Section
3.4.4.2

Section
3.4.5.1

MAC 2 0x0002 Metadata Section
3.4.4.2

Section
3.4.5.2

Signature 3 0x0003 Metadata Section
3.4.4.2

Section
3.4.5.3

Content
Type

10 0x00A0 any Section
3.4.5.4

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 22

Section Decimal
Type

Hexadecimal
Type

Valid Topics Reference

BLOB 11 0x00A1 any Section
3.4.5.5

Table 5: Predefined Sections

Sections may be valid only in combination with a specific topic. If that is the case, such valid
topics are listed here or in the respective section descriptions. If no such restriction is listed, the
section may appear in any topic.

Section values below 1024 are reserved for use in this specification or later revisions or
extensions; the remainder are application choices.

If a section appears in an invalid topic, implementations ignore it. They emit
warnings about malformed extents as far as they have provisions for doing so, and reject
the entire extent.

Note in particular that there is no generic "data" section defined here. This is done purposefully,
such that applications define at least one section type.

MUST SHOULD
MAY

MUST

3.4.5.1. Section: CRC32

Decimal Type Hexadecimal Type Valid Topics Size (octets)

1 0x0001 Metadata Section 3.4.4.2 2 + 2 + 4 = 8

Table 6: CRC32 Section

This section is only valid at the beginning of an extent payload. This is mostly to do with how
such checksums are calculated. For the sake of keeping implementations simpler,
implementations ignore CRC32 sections if they are found anywhere in an extent payload
other than at the start (offset zero).

The purpose of this of this section is twofold:

When used in an unencrypted extent, it provides simple integrity checking of the extent.
When used in an encrypted extent (see Section 3.7), then its presence at offset zero provides
for a convenient verification mechanism that decryption succeeded.

The CRC32 section contains a checksum over the payload following this section, to the end of the
payload (padding included).

This section is mutually exclusive with the MAC and signature sections.

This is a fixed sized section, so uses 2 + 2 octets for the section header. The payload is the 32 bit (=
4 octet) CRC32 sum.

MUST

1.
2.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 23

3.4.5.2. Section: Message Authentication Code (MAC)

Decimal Type Hexadecimal Type Valid Topics Size (octets)

2 0x0002 Metadata Section 3.4.4.2 2 + 2 + K

Table 7: MAC Section

A counterpart to the CRC32 section based on message authentication codes, this section
calculates a MAC over the payload following itself, up to the end of the payload (padding
included). Implementations ignore it if they encounter it in any place other than at the
start of the payload (offset zero).

The algorithm used in providing this MAC is specified in the message_authentication algorithm
selection.

This section is mutually exclusive with the CRC32 and signature sections.

This is a fixed sized section, though the size depends on the message_authentication algorithm
selected in the version tag. If the algorithm produces K octets of MAC, the section is 2 + 2 + K
octets in size.

MUST

3.4.5.3. Section: Signature

Decimal Type Hexadecimal Type Valid Topics Size (octets)

3 0x0003 Metadata Section 3.4.4.2 2 + 2 + K

Table 8: Signature Section

The public key cryptography counterpart to the MAC section is the signature section. It, too, is
only valid at the beginning of the payload. Implementations also ignore it if they are found
other than at the start (offset zero).

The purpose of this section is the same as for the CRC32 section, except it aids in sign-encrypt-
sign schemes (see Section 3.7).

The section contains a cryptographic signature from the authoring key pair, calculated over the
payload following this section, to the end of the payload (padding included).

The algorithm used in providing this signature is specified in the asymmetric_signature and

signature_hash algorithm selections.

This is a fixed sized section, though the size depends on the algorithm selection above. If the
algorithms produce K octets of signature, the section is 2 + 2 + K octets in size.

This section is mutually exclusive with the MAC and CRC32 sections.

MUST

3.4.5.4. Section: Content-Type

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 24

Decimal Type Hexadecimal Type Valid Topics Size (octets)

10 0x00A0 any variable

Table 9: Content-Type Section

The content type section is used to signal to applications whether and how to consume a
resource. In spirit, it can be treated as largely semantically equivalent to the collection of
representation headers defined in , most notably the "Content-Type" header.

Unlike the headers in HTTP, the section does not need to apply to an entire resource. Instead, the
following logic applies:

If the section's topic is the metadata topic (Section 3.4.4.2), it specifies the default content type
to assume if no others are provided.
If the section's topic is any other value, it specifies the content type only of sections in this
topic. Such a topic content type therefore overrides the default.

Additionally, the content type only applies to application-defined sections. Sections described in
this specification carry their own intrinsic meaning.

Much like HTTP headers, the section can carry multiple key-value pairs; the collection of key-
value pairs therefore defines the content type as a whole. When a default content type and a
topic specific content type are both provided, each key in the topic specific content type
individually overrides the value provided in the default content type. Keys only provided in the
default content type retain their meaning also for the topic. In this manner, both content types
are merged into the final set of key-value-tuples applicable to a topic.

The section payload is encoded as a UTF-8 character string.
Key-value pairs are separated from each other with a semicolon ; (U+003B).

Keys are separated from values with an equals sign = (U+003D).

Either separator used as a key or value character must be escaped, i.e. preceded by a
backslash \ (U+005C).

Keys must be stripped of leading and trailing whitespace. In values, whitespace is considered
part of the value. Whitespace is interpreted as equivalent to the \p{Whitespace} property in

.

This is a variable sized section.

[RFC7231], Section 3

1.

2.

1. [RFC3629]
2.

3.

4.

5.

[UNICODE-TR18]

3.4.5.5. Section: BLOB

Decimal Type Hexadecimal Type Valid Topics Size (octets)

11 0x00A1 any variable

Table 10: BLOB Section

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 25

https://rfc-editor.org/rfc/rfc7231#section-3

The BLOB section is a generic section for encoding binary large objects (BLOBs). It is variable
sized.

BLOB sections are not interpretable unless more information about the data stored within is
known. Applications use a prior content type section (Section 3.4.5.4) for this purpose,
but decide that for their purposes, only a particular interpretation makes sense.

SHOULD
MAY

3.4.5.5.1. Content Type and HTTP
A number of HTTP headers have no semantic meaning to Vessel, but applications may find it
interesting to use them. Unlike the Content-Type header, which is here represented as a few
distinct keys, there is no such mapping provided for other headers in this specification. The only
requirement is that if applications make use of HTTP header equivalents, their names be
the same as the HTTP header name in lower case, and they additionally prefixed with the
string "http-" to avoid collisions. For example, the HTTP "Content-Encoding" header would
become "http-content-encoding", etc.

MUST
MUST

3.4.5.5.2. Content Type and Streaming
The purpose of breaking a Vessel resource into individual extents is to also facilitate streaming
applications. In particular, this should permit decoding extents anywhere in the stream. As such,
it is recommended that content type sections are repeated at regular intervals, otherwise they
may remain unknown to decoding applications.

This, however, presents a uniqueness issue. If a subsequent content type section contains a
different specification than a previous one, applications must decide which to honour.

To mitigate this, applications only apply the content type to any sections following the
content type section. If they encounter another content type section B later on, they
disregard the earlier section A. Subsequent sections be interpreted according to the
content type described in B, and so forth.

This scheme has the benefit of being simple and unambiguous, but does imply that it is wrong to
assume a stream represents some kind of sub-resource. A better interpretation is that a stream
represents a sequence of sub-resources delimited by content type sections.

MUST
MUST

MUST

3.4.5.5.3. Content Type Keys
This document defines only a few content type keys, some in reference to the HTTP standard, or
the MIME standard HTTP is based upon.

Content Type Key Equivalent to Reference

media-type Content-Type media-type

charset Content-Type "charset" key

filename Content-Disposition "filename" key

Table 11: HTTP/MIME Header Equivalency

[RFC7231], Section 3.1.1.5

[RFC7231], Section 3.1.1.5

[RFC2183], Section 2.3

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 26

https://rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://rfc-editor.org/rfc/rfc7231#section-3.1.1.5
https://rfc-editor.org/rfc/rfc2183#section-2.3

Other keys are not defined at this point in time.

Note, however, that e.g. states that the "filename" key may contain only US-
ASCII values. At the same time, this specification in Section 3.4.5.4 clearly states the use of UTF-8.
In case of such conflicts, implementations follow this specifications instead of the
references.

[RFC2183], Section 2.3

MUST

3.5. Extent Identifiers
Extent identifiers uniquely identify each extent. As extent headers also encode the previous
extent, an extent chain is effectively created. However, to ensure the result is effectively a chain
and not some complex graph, the following must be fulfilled:

Individual authors must be able to create only a single new extent from a previous extent.
Multiple authors acting in parallel must not create the same extent identifier, effectively
overriding each other's efforts.
There must be an absolute order to extents in order to create an unambiguous sequence.
Any branches must eventually converge.

Origin extent identifiers are generated via a secure random function.

Extent identifiers should be chosen as large enough that collisions are sufficiently unlikely,
assuming the random function provides sufficient entropy. Given that UUID with its 128-bit labels
is deemed sufficient in size for providing uniqueness (), implementations choose
extent identifiers of at minimum 128 bits in length. Implementations follow the UUIDv4
generation process to generate origin extent identifiers, but are not required to do so.

The recommendations expressed in the above paragraph may change in future.

Any identifiers for subsequent extents are generated by concatenating the author identifier and
the previous extent identifier , as well as some random nonce, and then hashing the result. As
this random nonce must be known in order to repeat this process, it must become part of the
identifier itself. This may make it necessary to truncate the hash, but it is equally possible to
choose the length of identifier such that it fits the hash as well as nonce.

Note that while the nonce discussed here is a salt, unlike in key stretching applications, the other
inputs to the hash are not confidential. Some discussion on this is in Section 4.3. Introducing the
salt is a low effort technique for making their discovery harder. For the most part, however,
discussing a salt at all enables implementations to that do require these inputs to remain
confidential able to provide such confidentiality with ease by providing a sufficiently larger salt
and extent identifier.

1.
2.

3.

Figure 11: Pseudocode for Origin Extent Identifier Generation

origin_extent = RNG(length(extent_identifier))

[RFC4122] MUST
MAY

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 27

https://rfc-editor.org/rfc/rfc2183#section-2.3

For a similar reason, the hash function may be applied multiple times over the inputs.
Implementations apply it at least once, but apply it more often. For confidentiality,
implementations fulfil the requirements of .

Implementations choose nonce sizes of 16 bits or more. For confidentiality,
implementations fulfil the requirements of .

The choice of the number of iterations and nonce sizes is encoded as part of the
extent_identifier_hash choice in the version tag.

Given the above layout, the extent identifier generation algorithm is as follows:

The two algorithms combined fulfil the first two requirements listed above. To also fulfil the last,
we apply an ordering scheme to the resulting extent identifiers as described in Section 3.5.1.

MUST MAY
SHOULD [RFC2898], Section 4.2

MUST
SHOULD [RFC2898], Section 4.1

Figure 12: Nonce Diagram

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Nonce

Truncated Hash

Figure 13: Pseudocode for Extent Identifier Generation

nonce = RNG(length(nonce))

hash_input = author_identifier | previous_extent_identifier

current_result = hash_input
foreach number_of_iteratons
 current_result = extent_identifier_hash(current_result | nonce)
done

truncated_length = length(extent_identifier) - length(nonce)
truncated_hash = truncate(current_result, truncated_length)

extent_identifier = nonce | truncated_hash

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 28

https://rfc-editor.org/rfc/rfc2898#section-4.2
https://rfc-editor.org/rfc/rfc2898#section-4.1

3.5.1. Deterministic Ordering

Simply generating extent identifiers as outlined above will effectively yield a directed acyclic
graph (DAG) of extents; more precisely, the result is a simple tree. In order to fulfil the last
requirement above, we need a means by which authors deterministically choose the previous
extent upon which they build.

As extents may not be always synchronized across all nodes, the approach provided here may
still created branches. As extents become synchronized, however, all authors will converge on
the same previous extent, thereby collapsing all branches again.

Eventual synchronization can mean that the origin extent is not known to a node at any given
time. This means an incomplete resource may be known as a collection of sub-trees. The
algorithm here nevertheless provides a deterministic means for finding the ideal extent
identifier to use as the basis for a newly created one.

For illustration purposes, consider the following example:

First, we order extent identifiers by simple bitwise comparison. In the above example, this
means that B2 follows B1, and B3 follows both, etc.

For the full algorithm, it is necessary to calculate the weight of each path from the root node at
extent A, to all other nodes. The weight of each edge from a source to a target node is defined as
one divided by the number of target nodes that lead from the source node. Alternatively, this is
the number of siblings, including itself, that exist for the target node.

No. Path Edge Weights Cumulative Path Weight

1 A -> B1 1/3 0.333

2 A -> B2 1/3 0.333

3 A -> B3 1/3 0.333

Figure 14: Example Extent Tree Diagram

Extent A Extent B1 Extent C1
Extent C2

Extent B2 Extent D Extent F1
Extent F2

Extent B3 Extent E1
Extent E2 Extent G
Extent E3

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 29

No. Path Edge Weights Cumulative Path Weight

4 A -> B1 -> C1 1/3 + 1/2 0.833

5 A -> B1 -> C2 1/3 + 1/2 0.833

6 A -> B2 -> D 1/3 + 1 1.333

7 A -> B2 -> D -> F1 1/3 + 1 + 1/2 1.833

8 A -> B2 -> D -> F2 1/3 + 1 + 1/2 1.833

9 A -> B3 -> E1 1/3 + 1/3 0.666

10 A -> B3 -> E2 1/3 + 1/3 0.666

11 A -> B3 -> E2 -> G 1/3 + 1/3 + 1 1.666

12 A -> B3 -> E3 1/3 + 1/3 0.666

Table 12: Example Extent Path Weights

In this example, paths 7 and 8 have the highest weights. To tie break between paths of equal
weight, the path wins whose leaf node comes last in bitwise ordering. In this example, F2 comes
after F1, so path number 8 wins.

Authors select the leaf node of the winning path as the previous extent for creating a new
extent.

Over time, this algorithm will converge on the longest and least ambiguous path. Nodes with
fewer siblings have higher edge weights, and more nodes in the path will create a higher
cumulative weight.

The algorithm will even lead to convergence after a major network split. Assume network A
knows only a sub-tree TA, and network B knows only a sub-tree TB. Assume further that the
winning paths in both sub-trees TA and TB have the same cumulative weight W. The two sub-
trees will nonetheless have different leaf node extent identifiers, leading to a deterministic
winner when both sub-trees are finally synchronized.

Note that the deterministic ordering scheme presented here is comparable to .
However, instead of generating identifiers in some semantic order, this specification is only
concerned with deterministic ordering. The disambiguator here is the inclusion of the authoring
key, which is sufficient for the purposes of an abstract container.

MUST

[TREEDOC]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 30

3.6. Authoring
Authoring describes the act of creating an extent. To do so, one must be in possession of an
authoring key pair. Authoring consists of several operations.

In order to author an extent, an author must first generate an extent identifier. The
mechanisms for doing so are described in Section 3.5.
An extent must be created with the above extent identifier.
Data may be written to the extent payload (this is not strictly necessary; it is valid to create
an extent where the payload consists solely of padding).
The extent must be cryptographically signed.

While the middle steps are certainly relevant in real-world scenarios, note that it is the
combination of author identifier and signature that are the components that prove authorship.

The cryptographic signature here requires special attention. A signature here can come in two
distinct forms:

An asymmetric signature. It be possible to deduce a public key for verification from
the author identifier of the extent. The signature be created using the corresponding
private key.
A message authentication code (MAC), if confidentiality is provided for the extent payload
(see Section 3.7).

The choice of which signature to use is embedded in the version tag Section 3.2. This choice
therefore applies to the entire extent. It is not possible to create extents with confidentiality
provided only to partial payloads.

Note well that one implication of this is that a complete Vessel resource may consist of extents
whose version tag differ. This is a deliberate choice made in order to support resources with
different confidentiality requirements.

1.

2.
3.

4.

1. MUST
MUST

2.

3.6.1. Author Identifiers

Author identifiers are derived from key pairs . Generally speaking, a public key serves as a
sufficiently unique identifier in that a cryptographic challenge can be issued that only the party
in possession of the corresponding private key can successfully respond to. Such a challenge
protocol is outside of this document's scope.

Key fingerprints are often used as shorter, unique stand-ins for public keys. Unfortunately, each
cryptosystem tends to define its own method for generating such fingerprints. The general
approach, however, is to use a cryptographic hash function over a deterministic encoding of the
key parameters.

For generating author identifiers, author public keys be encoded using the Distinguished
Encoding Rules (DER) of . The author identifier hash function is an implementation choice.
The resulting hash may be further truncated.

MUST
[X.690]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 31

Figure 15: Pseudocode for Author Identifier Generation

encoded = DER(author_public_key)

hash = author_identifier_hash(encoded)

author_identifier = truncate(hash, length(author_identifier))

3.6.2. Authoring Counter

Extents are mutable; their content can change over time, while their identifier stays stable. This
has benefits in addressing e.g. the right to be forgotten, but a downside is that means other than
a content hash have to be found in order to signal that one version of an extent differs from
another.

To provide this, we introduce the authoring counter . It is a counter value scoped to the tuple of
author identifier and resource - that is, multiple authors may use the same value, and the same
author may use the same value across multiple resources.

Whenever authors write to an extent, they also need to update the signature. Prior to doing so,
they increment the authoring counter they maintain for the resource, and write it to the
header (i.e. the signature must extent also to this new counter value).

Doing so lets protocol implementations and receiving nodes quickly ascertain if an extent is a
newer version (larger authoring counter than locally stored) or older version, and reject and/or
delete older content. In order to maintain the right to be forgotten, implementations delete
extents thus outdated.

Nodes implement means by which to detect other nodes that do not conform to this, as
possible. Nodes keep a record of versions sent to nodes, and if those nodes return older
versions, blocklist them. Reasonable precautions be taken to avoid feeding content to
malicious or malfunctioning nodes, but such precautions are difficult to enforce remotely, and
somewhat outside the scope of this specification.

The stable identifier and authoring counter method has benefits over the more common content
hashing:

It is possible to detect outdated and updated versions, rather than merely detecting
difference.
Approaches to creating resource identifiers from the sum of the extent signatures such as
using merkle signature schemes (e.g.) require the generation and propagation of a
new resource identifier if a single component changes; this is less often the case if a similar
tree scheme using stable extent identifiers was used.
Most importantly, the scheme does not break the deterministic ordering scheme described in
Section 3.5.1.

MUST

MUST

SHOULD
SHOULD

SHOULD

1.

2.
[RFC8391]

3.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 32

Authoring counters do not have to be incremented strictly by one. The only requirement is that
new counters are larger than previously written ones. Wrap-around will occur eventually, which
is why implementations use a reasonably large counter, and use, at minimum, an
unsigned integer of 24 bits or larger.

SHOULD MUST

3.7. Confidentiality
Extents may provide payload confidentiality. Whether they do is encoded in the version tag
(Section 3.2.1). If the version tag indicates an encryption algorithm is used to provide
confidentiality, this algorithm should be chosen to decrypt parts of the extent prior to delivery to
the application. The logic functions much the same in reverse: if the application requests
confidentiality, the extent's version tag must encode this, and extents must be partially encrypted
before storing or transmitting.

As the version tag is the leading information here, it follows that it may not be encrypted itself. It
also follows that the choice of encryption spans the entire extent payload, not just parts of it.
Authors wishing to mix encrypted with unencrypted content must write these to distinct extents.

Confidentiality may be provided by a variety of algorithms, such as standard authenticated
encryption schemes with or without associated data, public key cryptography, and so forth. The
present section is concerned with how to apply any of them in a generic fashion.

We must differentiate between symmetric and public key based schemes here, due to how public
key schemes tend to be constructed. Because of the relative efficiency of symmetric schemes,
large plain text - such as a Vessel extent - is usually encrypted symmetrically with an ephemeral
key. The ephemeral key is then encrypted with the recipient(s) public key(s) before being
transported, such that only they can decipher it, and therefore recover the content.

This specification is not concerned with transporting symmetric keys, though appropriately
chosen AAA sections (Section 3.4.4.1) may be used for this purpose. A similar statement can be
made for the exchange of public key information.

For the purposes of confidentiality, we can therefore conclude the following:

Confidentiality is provided via a symmetric encryption scheme.
The key used in this symmetric encryption scheme is not communicated in extent envelope,
header or footer.
The signature algorithm may be provided by either of:

A message authentication code, using the same or a related key.
A public key pair based signature .

Requiring encryption and signing in this manner is equivalent to requiring authenticated
encryption, though this term typically refers only to MAC based schemes. As the signature
extends over unencrypted envelope and header data, it is practically an encrypted
authentication with associated data scheme (AEAD).

1.
2.

3.

◦
◦

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 33

In the interest of not creating new AEAD schemes, this specification permits only symmetric
encryption algorithms that are already AEAD constructions. This has some implications.

AEAD schemes provide an authentication tag instead of a signature. Using confidentiality
implies that the signature field in the extent footer contains this authentication tag. The
choice of signature_algorithm then is limited (see Section 3.8.6).

Additionally, AEAD schemes are created for encrypting e.g. many network packets using the
same secret key, a property that can be exploited to also produce many extents using the
same secret key. To do so, each packet or extent uses a unique nonce. This nonce need not be
confidential, as long as it is only used once per key. It is possible to derive this nonce from
extent metadata (see Section 3.8.7).

1.

2.

3.7.1. Encrypt-then-Sign

Authenticated encryption schemes that first encrypt the plain text, and then sign the resulting
cipher text do not provide an easy means for determining whether the decryption was
successful.

When using such schemes, implementations provide one of the CRC32 (Section 3.4.5.1),
MAC (Section 3.4.5.2) or signature sections (Section 3.4.5.3). The presence of either already
indicates that decryption was successful, and the section contents can extend this verification to
the remaining payload.

Encrypt-then-MAC is recommended by . It is also conceptually the way AEAD schemes
function.

MUST

[ISO-19772]

3.7.2. Sign-then-Encrypt

When plain text is first signed, then encrypted, it is usually the case that the signature is
concatenated to the plain text before encryption. In this manner, presence of the signature after
decryption also indicates that decryption succeeded.

It is possible to emulate this by providing MAC (Section 3.4.5.2) or signature section (Section
3.4.5.3), and then using an otherwise unauthenticated stream cipher for encryption. The length
of the signature in the footer would then be zero octets.

This mode is not supported by Vessel, and implementations use it.MUST NOT

3.7.3. Sign-then-Encrypt-then-Sign

In , the author contests that neither sign-then-encrypt nor encrypt-then-sign
provides sufficient guarantees for asymmetric encryption schemes. There is no guarantee in
either case that the signing party and the encrypting party are identical, which can lead to some
subtle forgery attacks.

It is possible to create that link by using a sign-then-encrypt-then-sign scheme in which the inner
and outer signatures are verifiably made by the same party, with the implication that they at
minimum agreed to the encryption.

[SIGN-ENCRYPT]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 34

As the symmetric ciphers permitted by this specification are already AEAD schemes of the sign-
then-encrypt style, and based on a kind of MAC construct, a sign-then-encrypt-then-sign
construction is reached if:

Encrypt-then-sign is used as in Section 3.7.1.
The checksumming section chosen is a MAC section (Section 3.4.5.2).
The key and nonce are identical for the MAC as for the outer AEAD scheme.

Implementations using confidentiality use a MAC section in this manner. If the MAC
section is chosen, implementations use the same key and nonce as in the AEAD
construction. See Section 3.8.4 for details.

1.
2.
3.

SHOULD
MUST

3.7.4. Encrypted Extent Parts

Some extent fields must remain in plain text in order to identify and otherwise work with the
extent, even if its contents remain encrypted.

The envelope is always in plain text. It is necessary for understanding anything at all about
the extent layout. It also does not leak any sensitive meta information.
If encryption occurs, the payload is always encrypted in its entirety, including any padding.
The signature is always in plain text, as it verifies the encrypted payload. If a signature
scheme with associated data is used, the signature also verify the envelope and header.

Some difficulty is present in the question whether or not the header needs to be present in plain
text, or may be encrypted. Encrypting would expose less meta information to observers, but
limits the operations possible on the extent.

For streaming purposes, the extent size be in plain text. At authoring time, it cannot be
known which node uses which mode of data transfer, so mandating this field to always
remain in plain text is only prudent. This information is also not particularly sensitive, as it
provides few clues to the extent contents.
The current extent identifier also be in plain text. It identifies the extent, and is
necessary for any node to determine how to process this data. Extent identifiers may be
generated using an algorithm that makes it infeasible to deduce its inputs (see Section 3.5).
The counter be in plain text. The reason relates mostly to nonce generation and
confidentiality (Section 3.8.7). But the tuple of current extent identifier and counter also
uniquely identifies an extent version. This permits corretly handling multiple versions of the
same extent, thereby permitting old extent payloads to be erased - this is required for the
right to be forgotten to be implemented.

Given these fields, nodes can process streams of extents, and also make some decisions on
whether and how to process them. The remaining header fields are not, strictly speaking,
required unless a full resource is to be processed.

Knowledge of the previous extent identifier permits ordering individual extents into a single
resource (Section 3.5.1).

1.

2.
3.

MUST

1. MUST

2. MUST

3. MUST

1.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 35

Knowledge of the author identifier permits verifying that a public key based signature over
the extent was created by the same public key as referenced via the author identifier.

If the private header flag is set in the version tag, these additional header fields be
encrypted. Otherwise they remain in plain text.

2.

MUST
MUST

3.8. Minimum Supported Algorithms
This section defines the mininum supported algorithms for specification conforming
implementations.

3.8.1. Hash Functions

A cryptographically secure hash function is required for creating version tags, extent identifiers
and author identifiers, and may be used in other constructs. Implementations Implementations

 support the following algorithms:

Algorithm Identifier Use Reference

SHA-3 512 sha3-512 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-3 384 sha3-384 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-3 256 sha3-256 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-3 224 sha3-224 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-2 512 sha-512 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-2 384 sha-384 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-2 256 sha-256 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

SHA-2 224 sha-224 version_tag_hash, extent_identifier_hash, author_identifier_hash,

nonce_hash

MUST

[NIST.FIPS.
202]

[NIST.FIPS.
202]

[NIST.FIPS.
202]

[NIST.FIPS.
202]

[NIST.FIPS.
180-4]

[NIST.FIPS.
180-4]

[NIST.FIPS.
180-4]

[NIST.FIPS.
180-4]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 36

Algorithm Identifier Use Reference

No hash none author_identifier_hash n/a

Table 13: Supported Hash Functions, their Uses and Definitions

Key pairs where the public key is small enough to reasonably fit into the author identifier field
do not require hashing for creating collision free identifiers. Implementations support this
none hash function, which simply returns its input value.

Implementations provide the SHA-3 family of hash functions, and the none function. The
SHA-2 family of functions be provided.

MUST

MUST

MAY

3.8.2. Public/Private Key Pairs

There is no particular reason for this specification to require the use of any specific public/
private key pair type, as keys are only indirectly used here. However, the keys may be used for
asymmetric signatures as described in Section 3.8.3, and for key exchanges building upon this
specification or developed alongside it.

Implementations only support key pairs for which asymmetric signature algorithms are
defined. Furthermore, implementations only support such key pairs for which key
exchange algorithms are defined.

Only the asymmetric signature algorithm (Section 3.8.3) is included in the version tag, so
specifying the key pair used directly is not required.

MUST
SHOULD

3.8.3. Asymmetric Signature Algorithm

As outlined above, Vessel requires support for asymmetric signature algorithms .

Algorithm Identifier Use Reference

PureEdDSA for curve25519 ed25519 asymmetric_signature ,

PureEdDSA for curve448 ed448 asymmetric_signature ,

DSA dsa asymmetric_signature

RSA rsa asymmetric_signature

Table 14: Supported Asymmetric Key Algorithms, their Uses and Definitions

Implementations provide the PureEdDSA functions based on edwards curves. DSA and RSA
functions be provided for compatibility with existing security standards.

[RFC8410] [RFC8032]

[RFC8410] [RFC8032]

[NIST.FIPS.186-4]

[NIST.FIPS.186-4]

MUST
SHOULD

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 37

3.8.3.1. Relation to Author Identifier Hash
The EdDSA algorithms using edwards curve based keys produce small enough public keys
that an author_identifier_hash may not be required, i.e. the none hash function be used
here (see Section 3.8.1).
Both DSA and RSA may produce public keys large enough that using a fingerprint (i.e.
author_identifier_hash) of the key is useful. Implementations use a supported hash
function here. They use a version of SHA-3, but use other hash functions. Keys

 be written with DER encoding rules according to , with the hash function
applied to the result.

•
MAY

•
MUST

SHOULD MAY
MUST [X.690]

3.8.3.2. Relation to Signature Hash
The EdDSA algorithm defines what signature hash function to use in . The
signature_hash value therefore be set to eddsa if this asymmetric signature algorithm is
used.
The DSA algorithm requires the selection of a hashing algorithm for signature_hash.
Implementations use one of the SHA-2 family of hash functions.
The RSA algorithm also requires an signature_hash. Implementations select one of the
SHA-2 or SHA-3 family of hash functions.

• [RFC8032]
MUST

•

MUST

• MUST

3.8.4. Message Authentication Codes

The following message authentication codes are defined for use in MAC sections (Section 3.4.5.2).

Algorithm Identifier Use Reference

Poly1305-AES poly1305 message_authentication ,

KMAC128 kmac128 message_authentication ,

KMAC256 kmac256 message_authentication ,

Table 15: Supported MAC Algorithms, their Uses and Definitions

Note that the section payload is the resulting code only, which also means the section size
depends on the algorithm selection in the version tag. Any nonces or keys used in computing the
MAC be encapsulated in appropriate sections in the authentication topic (Section 3.4.4.1),
but this is out of scope for this specification.

Some MAC algorithms require a nonce. Implementations either provide a unique nonce
per extent as required by the algorithm, or provide a unique key per extent if the algorithm has
no nonce requirement. See Section 3.8.7 for details.

Implementations provide the Poly1305 based algorithm, and also provide the
KMAC functions.

[RFC8439] [POLY1305]

[NIST.SP.800-185] [NIST.FIPS.202]

[NIST.SP.800-185] [NIST.FIPS.202]

MAY

MUST

MUST SHOULD

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 38

3.8.5. Symmetric Encryption

For encrypting the extent payload, we require symmetric stream ciphers that
impose any expectation that the plain text is a multiple of some block size in length. This is
because extent sizes are multiples of page sizes, and extent metadata occupies some of that
space.

It is in principle possible to select this metadata size such that the payload size is divisible by
some stream cipher's block size without remainder. Implementations provide such a specific
selection of algorithms, and thus permit additional stream ciphers. However, implementations

 permit the selection of such stream ciphers without taking precations with selecting
the metadata size as above.

The list contains only authenticated encryption algorithms with associated data (AEAD). The
rationale for this is in Section 3.7. These algorithms require a nonce per extent; see Section 3.8.7
for details on this.

Algorithm Identifier Use Reference

ChaCha20 chacha20 symmetric_encryption ,

AES-128 in GCM
mode

aead_aes_128_gcm symmetric_encryption

AES-256 in GCM
mode

aead_aes_256_gcm symmetric_encryption

AES-128 in CCM
mode

aead_aes_128_ccm symmetric_encryption

AES-256 in CCM
mode

aead_aes_256_ccm symmetric_encryption

No confidentiality none symmetric_encryption n/a

Table 16: Supported Symmetric Encryption Algorithms, their Uses and Definitions

As these are AEAD modes, the extent signature is provided by the AEAD algorithm's
authentication tag. See Section 3.8.6.

Implementations provide the ChaCha20 implementation. AES-based AEAD be
implemented as well, but may be omitted.

If the special identifier none is chosen, there is no encryption and no confidentiality.

SHOULD NOT

MAY

MUST NOT

[RFC8439]
[CHACHA]

[RFC5116]

[RFC5116]

[RFC5116]

[RFC5116]

MUST SHOULD

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 39

3.8.6. Signature Algorithm

The signature algorithm is a reference to other algorithms specified in the version tag hash; its
identifiers therefore are not algorithm identifiers as such, but reserved words that refer to
another algorithm identifier.

Extents can be authenticated via the signature, and additionally extent payloads may be
confidential. If confidentiality is provided, the authentication is already part of the AEAD
algorithm used. If confidentiality is not provided, signatures may either be provided by a
message authentication code or an asymmetric signature. All extents include a signature.

Algorithm Identifier Refers to Use

Authentication tag aead The AEAD algorithm's
authentication tag

 use when
confidentiality is
provided

Asymmetric
signature

keypair asymmetric_signature
algorithm

 use when
confidentiality is not
provided

Message
authentication
code

mac message_authentication
algorithm

 use when
confidentiality is not
provided

Table 17: Signature Algorithm Uses

MUST

MUST

SHOULD

MAY

3.8.7. Nonce Generation

There are a number of attacks possible when keys - for message authentication or confidentiality
- are re-used across multiple extents. In order to mitigate against these, some MAC algorithms
and all AEAD algorithms listed in the previous sections require the use of a nonce. This permits
sharing a key across multiple extents. The only requirement is that the nonces be unique
per extent.

Unlike the key, they do not themselves have to be confidential. That means we can derive a nonce
from public metadata of the extent. The envelope is not particularly unique here, however, the
current extent identifier and authoring counter in the public header together serve to identify a
unique extent version.

 requires 96 bit nonces, which also recommends. The latter also suggests
using a fixed nonce prefix as well as a variable counter to construct the nonce. That is exactly
what the current extent identifier and authoring counter provide.

Their length, however, depends on the algorithm choices. To make them more predictable, we
will hash their concatenation, and truncate the result to 96 bits (12 octets).

MUST

[RFC8439] [RFC5116]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 40

Figure 16: Pseudocode for Nonce Generation

inputs = current_extent_identifier | authoring_counter

hash = nonce_hash(inputs)

nonce = truncate(hash, 12)

3.8.7.1. Nonce Use
Some MAC algorithms may not require a nonce. However, the reasons for using a nonce still
remain.

If the algorithm (MAC, AEAD, etc.) require a nonce, implementations use the nonce as
the algorithm requires.
If the algorithm does not require a nonce, implementations still use it as outlined
below.

The nonce is additional material that is used to create a unique key per extent from the key
shared across extents as follows:

1. MUST

2. MUST

Figure 17: Pseudocode for Unique Key Generation from Nonce

unique_key = nonce_hash(shared_key | nonce)

4. Related Considerations

4.1. Human Rights Considerations
What follows is a list of objectives derived from , each with a brief statement how
Vessel addresses each concern, or why it does not.

[RFC8280]

Connectivity:

Reliability:

Content agnosticism:

4.1.1. In Scope

By addressing storage independent of transport, Vessel observes the end-to-end
principle, and does not require any specific functionality in middle-boxes.

Vessel separates content into extents, each of which constitutes a fully defined
Vessel document. Vessel organises extents in such a way that partial availability of extents
does not negatively impact the ability to process those that are available (although
encapsulated data may not have that same quality). Furthermore, extent authoring by
multiple sources is conflict-free.

Vessel is fully content agnostic and treats data as opaque binary objects.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 41

Heterogeneity Support:

Integrity:

Authenticity:

Confidentiality:

Privacy:

Censorship resistance:

Outcome Transparency:

Adaptability:

Decentralization:

Remedy:

Open Standards:

Part of the goal of subdividing data streams into extents was to permit
heterogeneous devices to participate in manipulating them, as extents limit e.g. memory and
bandwidth requirements. Similarly, no specific constraints are placed upon transfer protocols,
allowing heterogeneity also here.

Vessel contains provisions for ensuring the integrity of encapsulated data.

Vessel extent contents are always authenticated.

Vessel extent contents may be encrypted; the format provides for facilities to
achieve that.

Vessel provides anonymous modes of operation and data confidentiality, which
together specifically address .

Censorship resistance is difficult to achieve within Vessel itself. Extents
contain identifiers, which can be used to filter content either if the transport protocol itself
does not provide confidentiality. Similarly, middle-boxes could be used to filter content.
However, censorship resistance is one reason why the design of Vessel explicitly eschews
content hashes as extent identifiers. As a result, censorship can be circumvented simply by
generating a new identifier for the same content.

If these specifications do not provide for outcome transparency, that
 be considered reason for an amendment.

Adaptability is one of the major concerns of Vessel, being a content agnostic
container format. A reason for subdividing content into self-contained extents was to make
the format more easily usable in streaming applications, as well as persistent data storage.

The multi-authoring capabilities of Vessel aim at decentralized uses. Extents
belonging to the same data stream can be created independently by multiple authors,
synchronized, and brought into eventual consistency. If no synchronization occurs, multiple
diverging versions can be maintained independently of each other.

Remedy (new in often stands in stark contrast to
anonymity and pseudonymity, both of which are out of scope. That is, it will be difficult to
seek remedy against anonymous use that is abusive. However, another consideration in the
design of Vessel is the , specifically the "right to be forgotten". A leading consideration
in generating extent identifiers independent of content is that content can also be replaced
and deleted as a result. This stands in stark contrast to approaches using content hashes as
identifiers, which favour immutability of content.

Care has been taken to define this specification in reference to other open
standards (see the references section).

[RFC6973], Section 5.1.2

SHOULD

[I-D.draft-irtf-hrpc-guidelines-13]

[GDPR]

Internationalization:

4.1.2. Out of Scope

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 42

https://rfc-editor.org/rfc/rfc6973#section-5.1.2

Localization

Security:

Pseudonymity:

Anonymity:

Accessibility:

Vessel treats data as opaque binary objects, and thus permits internationalization of such
data, but does not explicitly support it.

The resource format is intended for processing by computers; localizing the name
of each field is the concern of an application displaying this data.

 lists data transfer (i.e. protocol) considerations that are not in scope for
Vessel. Furthermore, it enumerates concerns regarding the handling of cryptographic keys.
Vessel itself is agnostic to such mechanisms, but may nonetheless be used to carry related
information. Some suggestions on this are provided, but security as per is, strictly
speaking, out of scope.

Identifiers in Vessel are not tied to any personally identifiable information, and
can be entirely ephemeral. It is up to applications using Vessel to ensure pseudonymity
concerns.

As with pseudonymity, anonymity is an application concern. However, this
document enumerates some in Section 4.4.

Being content agnostic, Vessel permits accessibility concerns being addressed in
applications, but does not provide any facilities for it.

[BCP72]

[RFC8280]

4.2. Protocol Considerations
Vessel does not require the use of any specific transport protocol. However, this section
elaborates some considerations on what makes a transport protocol a good fit for Vessel.

Above other considerations, an extent is typically larger than the average network packet/
datagram. It is therefore necessary that transports provide a mode for chopping up the extent
into packet payloads, and re-assembling the result at the receiving end. Applications that
combine a Vessel implementation with transport treat the entire extent as either
available in full or not at all; Vessel has no provision for dealing with partial extents.

In a request/response oriented protocol, implementations respond to the tuple of extent
identifier and authoring counter. This tuple specifies a precise extent version. Implementations

 additionally respond to just the extent identifier, and return the latest authoring counter
for this identifier they are aware of. Implementations refuse to return extent versions that
are older than the latest they are aware of; this would help implement the right to be forgotten.

Implementations treat a request for the origin extent of a resource as representing the
entire resource. By example of a podcast encapsulated in Vessel, it may depend on context
whether this means downloading a pre-recorded file, or joining a live stream at the current time
stamp. The only suggestion here is that the origin extent identifier makes for a good resource
identifier due to the logical tree structure that extent identifiers produce.

SHOULD

SHOULD

SHOULD
MAY

MAY

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 43

4.3. Security Considerations
Vessel is not a network protocol; a number of security considerations from do not apply.
Predominantly, this specification attempts to protect against offline cryptographic attacks. From
a certain point of view, each extent can be viewed as an individual message in a message stream.
This means also active attacks from are in scope of these considerations.

Vessel takes care not to invent new cryptographic constructs. It relies on well understood
mechanisms such as authenticated encryption with associated data (AEAD), rather than
producing a similar result via newly crafted encrypt-then-sign schemes or similar.

The use of the version tag is additionally a security consideration. While it makes sense for the
longevity of this specification to make specific cryptographic algorithms an implementation
choice, it also makes sense to limit such choices. According to , vulnerabilities in
cryptographic implementations are far from the most common, but regularly make the top ten
list of issues. The report cannot measure impact, however. Often, cryptography is left to few base
components upon which the majority of applications build.

It is prudent to limit the number of permutations of cryptographic algorithms, while still
permitting the possibility for easily replacing outdated ones (Section 3.2.1.2).

Key negotiation is out of scope of this specification; therefore, attacks that relate to gaining access
to key material, passwords, etc. are out of scope.

[BCP72]

[BCP72], Section 3.3

[CVE-TYPE]

4.3.1. Confidentiality

Vessel extents are designed with confidentiality in mind, but may be used without such features.
This is desirable in a container format, as information contained within may also be
disseminated to the public.

The approach to confidentiality is based on current best practice AEAD algorithm choices from
 and , and follow the suggestions in those documents.[RFC8439] [RFC5116]

4.3.2. Data Integrity

Data integrity is provided via a mandatory signature over the entire extent. This may be
provided in the form of an AEAD authentication tag, in which case all unencrypted extent data is
included in the associated data. Alternatively, MAC or asymmetric signature algorithms are
provided for non-confidential extent payloads.

4.3.3. Peer Entity Authentication

In the context of Vessel, peer entity authentication may better be referred to as data origin
authentication. In either case, the mandatory extent signatures are always keyed. This requires
both origin and recipient to previously perform some kind of key exchange.

While the key exchange itself is not in scope of this document, on the assumption that it has
occurred, it is possible to verify the data origin. Particular attention is given to subtler attacks
when confidentiality is also used (see Section 3.7.3).

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 44

https://rfc-editor.org/rfc/rfc3552#section-3.3

4.3.4. Non-Repudiation

Non-repudiation is desirable, but out of scope of this document largely because key exchange is
out of scope. This specification presumes that the validity of keys is established before attempting
to use them.

4.3.5. Unauthorized Usage

Authorization is generally outside of the scope of this specification, as it effectively relates to the
problem space of key exchange, validation, etc.

However, some authorization concerns can be discussed. As the container format is specifically
designed for multi-authoring purposes, authorization concerns must raise their head.

Read authorization is effectively granted by either
Providing the extent payload in plain text, or
Initiating a key exchange for the encrypted payload, which is itself out of scope.
Write authorization is less of a question of permitting authorship; any entity can generate a
key pair and start authoring extents for a resource. Rather, it becomes a question of which
authors are considered trustworthy enough to be included in the resource.

As the origin extent identifier is randomly generated, there is nothing stopping an attacker from
re-using the same origin extent identifier for a competing resource. For a reader to verify the
correct origin extent has been received is then a queston of accepting or rejecting the origin
extent's author. This is out of scope of this specification. However, implementations using Vessel

 take care to establish the origin extent author's trustworthiness.

With trust in the origin extent established, it is prudent to trust only those authors of additional
extents that the origin extent author explicitly authorizes. Such a scheme is outside of the scope
of this document; however, the AAA topic (Section 3.4.4.1) is specifically reserved to encapsulate
such information.

Given an appropriate authorization scheme and a verified origin extent author, nodes can
identify unauthorized extents, and reject them as not belonging to the same resource.

1.
2.
3.
4.

MUST

MUST

4.3.6. Inappropriate Usage

Any scheme that prevents unauthorized use may also be extended to prevent inappropriate use.
As above, these schemes are out of scope.

4.3.7. Denial of Service

It is feasible to treat the generation of extents that are not authored by authorized users as a kind
of denial of service attack. It certainly consumes resources on the recipient's side.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 45

Most such "denial of service" mitigation is out of scope for the reasons previously mentioned.
However, an authorization scheme that is transported within Vessel extents itself may also
permit nodes from understanding the authorization state of a resource without being privy to
encrypted extent payloads. Such nodes not relay extents to further recipients that they
can already reject as unauthorized, thereby limiting the spread of the denial attack.

SHOULD

4.3.8. Replay Attacks

Replay attacks are not inherently damaging to Vessel; an extent may be received multiple times.
The complete resource de-duplicates this via the extent ordering scheme described in Section
3.5.1.

However, appropriate countermeasures against a node transmitting an extent multiple times
 be implemented near the transport layer.SHOULD

4.3.9. Message Insertion

Message insertion is largely equivalent to the unauthorized use case described in Section 4.3.5,
and mitigation against it therefore the same.

4.3.10. Message Deletion

The extent ordering scheme in Section 3.5.1 is deliberately designed to enable both handling of
partial trees as well as deterministic merging of them afterwards. Message deletion in the sense
of extent deletion therefore is mitigated against.

There is, however, some interaction with unauthorized use. Assume a reader wishes to join the
live stream of a resource at the current time point. If this extent is not authored by the same
entity as the origin extent, it will be difficult to establish trust in it; attackers may exploit this.

To exploit this, an attacker must be a man-in-the-middle. They must receive extents from
upstream, and scan them for authentication information. They must then delete - i.e. not pass on
- the extent containing such information. The downstream recipient now has two resource
subtrees to deal with, one from the origin to this deleted extent, and one following the deleted
extent. An attacker may use this deletion attack to then launch an insertion attack, and fake the
entire subtree following the deleted extent.

Within Vessel itself, it is not possible to mitigate against such an attack. This is in scope of a
transport protocol, however. Simple transport encryption via TLS and establishment of trust in
the sending node mitigates the man-in-the-middle scenario, however.

If it is not possible to establish trust in the sending node in this manner, protocol
implementations take care to securely transmit authentication data out of band of the
extent stream.

MUST

4.3.11. Message Modification

The mandatory signature algorithms should be sufficient mitigation against message
modification.

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 46

4.3.12. Man-In-The-Middle

A conceivable man-in-the-middle scenario is discussed in Section 4.3.10; otherwise, as Vessel is
not a networking protocol, the kind of attack does not easily apply.

4.3.13. Key Usage

Vessel relies on secure key exchange outside of its own specification. More precisely, it assumes
that:

Public keys are exchanged, and mapped to author identifiers.
Encryption and MAC keys are exchanged as necessary.
The latter are updated regularly; see for usage limits.

Each of these exchanges can be mapped into extent sections in the reserved AAA topic (Section
3.4.4.1), but such a mapping is not in scope of this document.

Nonces are, where they are used, derived from public extent metadata. This is consistent with
the MAC and AEAD constructs referenced in this document, and should not pose any security
risk.

1.
2.
3. [I-D.draft-irtf-cfrg-aead-limits-05]

4.4. Privacy Considerations
This section lists privacy considerations as covered by and Vessel's relationship to
them.

[RFC6973]

4.4.1. Surveillance

The surveillance concers outlined in specifically relate to network protocols; Vessel is
not such a protocol.

It is in the nature of a storage format that it applies to files, which may be duplicated and
analysed at leisure. Vessel can only provide confidentiality.

However, it is worth stressing that authoring keys are in no way required to be identity keys, that
is, keys intrinsically tied to a person. They may be ephemeral keys, and rotated at will in order to
mitigate some surveillance measures. This interacts with key exchanges (which are also out of
scope), as well as the attack described in {#sec:security-considerations-message-deletion}.

The consequence of this is that implementations adopting this format take care to make
authoring keys last only as long as necessary.

Besides efficiency in memory and storage mapping, the fixed sized extent was also chosen to
mitigate against some kinds of "traffic" analysis, whereby the size of extent sequences can be
matched against likely content candidates.

Using confidentiality and always padding to the same extent size obscures the size of the plain
text payload, and makes such analysis harder.

[RFC6973]

SHOULD

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 47

4.4.2. Stored Data Compromise

Vessel mitigates against most stored data compromises by offering encrypted extents. Other data,
such as key material, is outside of this specification's scope. Implementations recognize
that compromised keys may lead to data compromises.

MUST

4.4.3. Intrusion

In the context of Vessel, intrusion maps neatly onto message insertion ({#sec:security-
considerations-message-insertion}). Vessel attempts to protect against such attacks, but is reliant
on up-to-date authorization data at the receiving end.

4.4.4. Misattribution

Misattribution in refers to misattribution to individuals; Vessel has no understanding
of individuals. It is possible to create identity key pairs for individuals and use them directly in
authoring extent. Such use is strongly discouraged. Implementations rather generate
authoring key separately, and use a secure channel to get them authorized. Such authorization
may require linking them to the identity key, but this is not required by, and not known to Vessel.

Authorization and key generation are out of scope for this specification.

[RFC6973]

SHOULD

4.4.5. Correlation

Vessel cannot protect against correlation of any data sent in plain text. When confidentiality is
used, it is difficult to glean any information from the plain text that would permit correlation.

The main information that can be correlated is in the use of the authoring key. Implementations
 not only regularly generate new authoring keys and undergo re-authorization, but also
 use different authoring keys for different resources.

As a result, it will be difficult to correlate any information over longer term usage. Only within
the window in which a single authoring key is used can an attacker establish how many extents
this author created.

Authorization and key generation are out of scope for this specification.

SHOULD
SHOULD

4.4.6. Identification

The authoring key is the only public information that can be used to identify a user. As explained
in the previous sections, authoring keys should not be used over a long term. This also thwarts
identification by providing less data to link to the same user.

As far as personal identifiable information (PII) is concerned, the requires that such
information can be deleted (right to be forgotten). This is the reason why extent identifiers are
not based on content, but on position in the resource stream. This permits modifying the content
in a later version of the same extent, which includes deleting content.

[GDPR]

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 48

[CHACHA]

[GDPR]

[ISO-19772]

5. References

5.1. Normative References

, , January 2008,
.

, ,
, 27 April 2016,

.

,
, , November 2020,

.

Note, however, that the extent identifier and authoring key are strongly linked. An updated
extent must be authored by the same authoring key. If applications wish to support this right to
be forgotten, they store outdated keys until all of an extent payload has been deleted, and
the extent is empty.

MUST

4.4.7. Secondary Use

Secondary use concerns are not in scope of this document.

4.4.8. Disclosure

As Vessel is a storage format rather than a network protocol, the threat model assumes attackers
have easy access to extents. Any disclosure related concerns are authorization concerns, which
are largely out of scope for this document except as discussed in {#sec:security-considerations-
unauthorized-usage}.

4.4.9. Exclusion

Exclusion is a network protocol consideration, and does not apply to Vessel. It is strongly
recommended that transport protocols consider this issue.

Consider a transport protocol that permits subscribing to a resource. As new extents get created,
the node creating them may advertise their creation to subscribers immediately. It is feasible for
an attacker to deduce from such advertisments when an author is both actively creating and/or
attached to the internet in some fashion.

Transport protocols consider batching advertisments or delaying them to thwart such
analysis.

SHOULD

4.5. IANA Considerations
This document has no IANA actions.

Daniel J Bernstein "ChaCha, a variant of Salsa20" <http://cr.yp.to/
chacha/chacha-20080128.pdf>

Council of the European Union "General Data Protection Regulation (GDPR)" EU
Regulation 2016/679 <https://eur-lex.europa.eu/legal-content/EN/
ALL/?uri=CELEX:32016R0679&qid=1661512309950>

Technical Committee ISO/IEC JTC 1/SC 27 Information security, cybersecurity
and privacy protection "ISO/IEC 19772:2020: Information security -
Authenticated encryption" ISO 19772.202 <https://www.iso.org/
standard/81550.html>

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 49

http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679&qid=1661512309950
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679&qid=1661512309950
https://www.iso.org/standard/81550.html
https://www.iso.org/standard/81550.html

[NIST.FIPS.180-4]

[NIST.FIPS.186-4]

[NIST.FIPS.202]

[NIST.IR.8366]

[NIST.SP.800-185]

[POLY1305]

[RFC2119]

[RFC2183]

[RFC3365]

[RFC3629]

[RFC5116]

[RFC5652]

, ,
, , July 2015,

.

,
, , July 2013,

.

,
, ,

, July 2015, .

, , , , , , ,
, , , , and ,

,
, ,

April 2021, .

, , and ,
,

, , ,
.

, , March
2005, .

, , ,
, , March 1997,
.

, , and ,
,

, , August 1997,
.

,
, , , , August 2002,

.

, , , ,
, November 2003, .

, ,
, , January 2008,

.

, , , ,
, September 2009, .

Dang, Q. "Secure Hash Standard" National Institute of Standards and
Technology report DOI 10.6028/nist.fips.180-4 <https://doi.org/
10.6028/nist.fips.180-4>

"Digital Signature Standard (DSS)" National Institute of Standards and
Technology report DOI 10.6028/nist.fips.186-4 <https://doi.org/
10.6028/nist.fips.186-4>

Dworkin, M. "SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions" National Institute of Standards and Technology report DOI
10.6028/nist.fips.202 <https://doi.org/10.6028/nist.fips.202>

Miller, K. Alderman, D. Carnahan, L. Chen, L. Foti, J. Goldstein, B. Hogan, M.
Marshall, J. Reczek, K. Rioux, N. Theofanos, M. D. Wollman "Guidance for
NIST staff on using inclusive language in documentary standards" National
Institute of Standards and Technology (U.S.) report DOI 10.6028/nist.ir.8366

<https://doi.org/10.6028/nist.ir.8366>

Kelsey, J. Chang, S.-j. R. Perlner "SHA-3 Derived Functions: cSHAKE,
KMAC, TupleHash and ParallelHash" National Institute of Standards and
Technology special publication DOI 10.3030/NIST.SP.800-185 n.d. <https://
doi.org/10.6028/nist.sp.800-185>

Daniel J Bernstein "The Poly1305-AES message-authentication code"
<http://cr.yp.to/mac/poly1305-20050329.pdf>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/rfc/
rfc2119>

Troost, R. Dorner, S. K. Moore, Ed. "Communicating Presentation
Information in Internet Messages: The Content-Disposition Header Field" RFC
2183 DOI 10.17487/RFC2183 <https://www.rfc-editor.org/rfc/
rfc2183>

Schiller, J. "Strong Security Requirements for Internet Engineering Task Force
Standard Protocols" BCP 61 RFC 3365 DOI 10.17487/RFC3365
<https://www.rfc-editor.org/rfc/rfc3365>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/rfc/rfc3629>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC
5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/rfc/
rfc5116>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/rfc/rfc5652>

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 50

https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.ir.8366
https://doi.org/10.6028/nist.sp.800-185
https://doi.org/10.6028/nist.sp.800-185
http://cr.yp.to/mac/poly1305-20050329.pdf
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2183
https://www.rfc-editor.org/rfc/rfc2183
https://www.rfc-editor.org/rfc/rfc3365
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5652

[RFC6973]

[RFC7231]

[RFC7624]

[RFC8032]

[RFC8174]

[RFC8280]

[RFC8410]

[RFC8439]

[UNICODE-TR18]

[X.690]

[BCP72]

[CVE-TYPE]

[DMC]

, , , , , , and
, , ,

, July 2013, .

 and ,
, , , June 2014,

.

, , , , , , and
,

, , , August 2015,
.

 and ,
, , , January 2017,

.

, ,
, , , May 2017,

.

 and ,
, , , October 2017,

.

 and ,
, ,

, August 2018, .

 and , , ,
, June 2018, .

,
, 8 February 2022, .

,

,
, 1994.

5.2. Informative References

 and ,
, , , , July 2003,

.

, , 22 May 2007,
.

, , .

Cooper, A. Tschofenig, H. Aboba, B. Peterson, J. Morris, J. Hansen, M. R.
Smith "Privacy Considerations for Internet Protocols" RFC 6973 DOI 10.17487/
RFC6973 <https://www.rfc-editor.org/rfc/rfc6973>

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/rfc/rfc7231>

Barnes, R. Schneier, B. Jennings, C. Hardie, T. Trammell, B. Huitema, C. D.
Borkmann "Confidentiality in the Face of Pervasive Surveillance: A Threat
Model and Problem Statement" RFC 7624 DOI 10.17487/RFC7624
<https://www.rfc-editor.org/rfc/rfc7624>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/rfc/rfc8032>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/rfc/
rfc8174>

ten Oever, N. C. Cath "Research into Human Rights Protocol
Considerations" RFC 8280 DOI 10.17487/RFC8280 <https://
www.rfc-editor.org/rfc/rfc8280>

Josefsson, S. J. Schaad "Algorithm Identifiers for Ed25519, Ed448, X25519,
and X448 for Use in the Internet X.509 Public Key Infrastructure" RFC 8410 DOI
10.17487/RFC8410 <https://www.rfc-editor.org/rfc/rfc8410>

Nir, Y. A. Langley "ChaCha20 and Poly1305 for IETF Protocols" RFC 8439
DOI 10.17487/RFC8439 <https://www.rfc-editor.org/rfc/rfc8439>

Mark Davis "Unicode® Technical Standard #18: Unicode Regular
Expressions" <http://www.unicode.org/reports/tr18/>

International Telecommunications Union "Information Technology - ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER)" ITU-T Recommendation X.
690

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/rfc/rfc3552>

MITRE Corporation "Vulnerability Type Distributions in CVE"
<https://cve.mitre.org/docs/vuln-trends/index.html>

"Distributed Mutable Containers (DMC)" n.d. <http://purl.org/dmc>

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 51

https://www.rfc-editor.org/rfc/rfc6973
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7624
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8280
https://www.rfc-editor.org/rfc/rfc8280
https://www.rfc-editor.org/rfc/rfc8410
https://www.rfc-editor.org/rfc/rfc8439
http://www.unicode.org/reports/tr18/
https://www.rfc-editor.org/rfc/rfc3552
https://www.rfc-editor.org/rfc/rfc3552
https://cve.mitre.org/docs/vuln-trends/index.html
http://purl.org/dmc

[DUBLIN-CORE]

[ERIS]

[FREENET]

[I-D.draft-irtf-cfrg-aead-limits-05]

[I-D.draft-irtf-hrpc-guidelines-13]

[I-D.draft-knodel-terminology-10]

[NGI0-Discovery]

[NLNET]

[RFC2898]

[RFC4122]

[RFC7927]

[RFC8391]

, , 20 January 2020,
.

, , ,
.

, , , and ,
,

, , 2001,
.

, , and ,
, ,

, 11 July 2022,
.

 and ,
, ,

, 28 March 2022,
.

 and ,
, ,

, 11 July 2022,
.

, , , 1 November
2018, .

, , , .

, ,
, , September 2000,

.

, , and ,
, , , July 2005,

.

, , , , , ,
, and ,
, , , July 2016,

.

, , , , and ,
, , , May

2018, .

DCMI Usage Board "DCMI Metadata Terms" <https://
www.dublincore.org/specifications/dublin-core/dcmi-terms/>

Renberg, E. "Encoding for Robust Immutable Storage (ERIS)" n.d. <https://
eris.codeberg.page/spec>

Clarke, I. Sandberg, O. Wiley, B. T. Hong "Freenet: A Distributed
Anonymous Information Storage and Retrieval System" Designing Privacy
Enhancing Technologies pp. 46-66 DOI 10.1007/3-540-44702-4_4 <https://
doi.org/10.1007/3-540-44702-4_4>

Günther, F. Thomson, M. C. A. Wood "Usage Limits on
AEAD Algorithms" Work in Progress Internet-Draft, draft-irtf-cfrg-aead-
limits-05 <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-
limits-05>

Grover, G. N. ten Oever "Guidelines for Human Rights
Protocol and Architecture Considerations" Work in Progress Internet-Draft,
draft-irtf-hrpc-guidelines-13 <https://datatracker.ietf.org/doc/
html/draft-irtf-hrpc-guidelines-13>

Knodel, M. N. ten Oever "Terminology, Power, and
Inclusive Language in Internet-Drafts and RFCs" Work in Progress Internet-
Draft, draft-knodel-terminology-10 <https://datatracker.ietf.org/
doc/html/draft-knodel-terminology-10>

Stichting NLNet "NGI Zero Discovery" DOI 10.3030/825322
<https://doi.org/10.3030/825322>

Stichting NLNet "NGI Zero Discovery" n.d. <https://nlnet.nl/discovery/>

Kaliski, B. "PKCS #5: Password-Based Cryptography Specification Version 2.0"
RFC 2898 DOI 10.17487/RFC2898 <https://www.rfc-editor.org/
rfc/rfc2898>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN
Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-
editor.org/rfc/rfc4122>

Kutscher, D., Ed. Eum, S. Pentikousis, K. Psaras, I. Corujo, D. Saucez, D.
Schmidt, T. M. Waehlisch "Information-Centric Networking (ICN) Research
Challenges" RFC 7927 DOI 10.17487/RFC7927 <https://www.rfc-
editor.org/rfc/rfc7927>

Huelsing, A. Butin, D. Gazdag, S. Rijneveld, J. A. Mohaisen "XMSS:
eXtended Merkle Signature Scheme" RFC 8391 DOI 10.17487/RFC8391

<https://www.rfc-editor.org/rfc/rfc8391>

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 52

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://eris.codeberg.page/spec
https://eris.codeberg.page/spec
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-05
https://datatracker.ietf.org/doc/html/draft-irtf-hrpc-guidelines-13
https://datatracker.ietf.org/doc/html/draft-irtf-hrpc-guidelines-13
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://doi.org/10.3030/825322
https://nlnet.nl/discovery/
https://www.rfc-editor.org/rfc/rfc2898
https://www.rfc-editor.org/rfc/rfc2898
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc4122
https://www.rfc-editor.org/rfc/rfc7927
https://www.rfc-editor.org/rfc/rfc7927
https://www.rfc-editor.org/rfc/rfc8391

[SIGN-ENCRYPT]

[TREEDOC]

[UNHRC51]

asymmetric signature algorithm

author identifier hash
authoring
authoring counter

block

directed acyclic graph

envelope
envelope version
extent
extent identifier
extent identifier hash

,
, , 5 May 2001,

.

, , , and ,
,

, , June 2009,
.

, ,

,
, 4 August 2022, .

Index

Section 3.1, Paragraph 3.12.1; Section 3.7, Paragraph
7, Item 3.2.2; Section 3.8.3, Paragraph 1

Section 3.1, Paragraph 3.6.1; Section 3.6.1, Paragraph 3
Section 2.1, Paragraph 1.26.1; Section 3.6, Paragraph 1

Section 3.3.2, Paragraph 5, Item 3; Section 3.6.2, Paragraph 2

Section 2.1, Paragraph 1.4.1

Section 3.5.1, Paragraph 1

Section 2.1, Paragraph 1.12.1; Section 3.3.1, Paragraph 1
Section 3.2, Paragraph 2, Item 1

Section 2.1, Paragraph 1.6.1; Section 3.3, Paragraph 1
Section 3.5, Paragraph 7

Section 3.1, Paragraph 3.4.1

Don Davis "Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP,
and XML" Proceedings of USENIX Technical Conference 2001
<http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.PDF>

Preguica, N. Marques, J. Shapiro, M. M. Letia "A Commutative Replicated
Data Type for Cooperative Editing" 2009 29th IEEE International Conference on
Distributed Computing Systems DOI 10.1109/icdcs.2009.20 <https://
doi.org/10.1109/icdcs.2009.20>

United Nations Human Rights Council "The right to privacy in the digital age"
Annual reports of the United Nations High Commissioner for Human Rights and
reports of the Office of the High Commissioner and the Secretary-General
report A/HRC/51/17 <https://undocs.org/A/HRC/51/17>

Acknowledgments
Development of this work was undertaken under a grant agreement with NLNet Foundation

, which manages the NGI Zero Discovery fund .[NLNET] [NGI0-Discovery]

A B D E F H K M N O P R S T V

A

B

D

E

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 53

http://world.std.com/~dtd/sign_encrypt/sign_encrypt7.PDF
https://doi.org/10.1109/icdcs.2009.20
https://doi.org/10.1109/icdcs.2009.20
https://undocs.org/A/HRC/51/17

footer

header

key
key exchange algorithm
key pair

message authentication

metadata topic

nonce hash

origin extent
ownership

payload
private header

resource

section
sector
signature algorithm

signature hash
stream
symmetric encryption

Section 3.3.4, Paragraph 1

Section 3.3.2, Paragraph 1

Section 2.1, Paragraph 1.20.1
Section 3.1, Paragraph 3.14.1

Section 2.1, Paragraph 1.22.1; Section 3.1, Paragraph 3.10.1; Section 3.6.1,
Paragraph 1; Section 3.7, Paragraph 7, Item 3.2.2

Section 3.1, Paragraph 3.18.1; Section 3.6, Paragraph 5, Item
2; Section 3.7, Paragraph 7, Item 3.2.1

Section 3.4.4.2, Paragraph 2

Section 3.1, Paragraph 3.8.1

Section 2.1, Paragraph 1.10.1; Section 3.5, Paragraph 3
Section 2.1, Paragraph 1.24.1

Section 2.1, Paragraph 1.14.1; Section 3.3.3, Paragraph 2
Section 3.1, Paragraph 3.24.1; Section 3.7.4, Paragraph 7

Section 2.1, Paragraph 1.8.1

Section 2.1, Paragraph 1.16.1; Section 3.4, Paragraph 1
Section 2.1, Paragraph 1.2.1

Section 3.1, Paragraph 3.20.1; Section 3.3.4, Paragraph 1; Section
3.7, Paragraph 7.3.1

Section 3.1, Paragraph 3.22.1
Section 2.1, Paragraph 1.18.1; Section 3.4, Paragraph 2

Section 3.1, Paragraph 3.16.1

F

H

K

M

N

O

P

R

S

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 54

truncation

version tag
version tag hash

Section 2.1.1, Paragraph 1.8.1

Section 3.2, Paragraph 2, Item 2
Section 3.1, Paragraph 3.2.1; Section 3.2.1, Paragraph 1

T

V

Author's Address
Jens Finkhäuser
Interpeer gUG (haftungsbeschraenkt)

ietf@interpeer.ioEmail:
https://interpeer.io/URI:

Internet-Draft Vessel Container Format July 2023

Finkhaeuser Expires 29 January 2024 Page 55

mailto:ietf@interpeer.io
https://interpeer.io/

	Vessel Container Format
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Objectives
	1.2. Scope
	1.3. Previous Work

	2. Conventions and Definitions
	2.1. Terminology
	2.1.1. Pseudo-Code Conventions

	3. Specification of Vessel
	3.1. Algorithms
	3.2. Versioning of Extent Metadata
	3.2.1. Version Tag Algorithm
	3.2.1.1. Version Tag Example
	3.2.1.2. Version Tag Permutations

	3.3. Extents
	3.3.1. Envelope
	3.3.2. Header
	3.3.3. Payload
	3.3.3.1. Padding

	3.3.4. Footer
	3.3.5. Full Extent Layout

	3.4. Sections
	3.4.1. Fixed-Sized Sections
	3.4.2. Variable-Sized Sections
	3.4.3. Section Fields
	3.4.3.1. Variable-Sized Length Encoding

	3.4.4. Topics
	3.4.4.1. Topic: Authentication, Authorization and Accounting
	3.4.4.2. Topic: Metadata

	3.4.5. Predefined Sections
	3.4.5.1. Section: CRC32
	3.4.5.2. Section: Message Authentication Code (MAC)
	3.4.5.3. Section: Signature
	3.4.5.4. Section: Content-Type
	3.4.5.5. Section: BLOB
	3.4.5.5.1. Content Type and HTTP
	3.4.5.5.2. Content Type and Streaming
	3.4.5.5.3. Content Type Keys

	3.5. Extent Identifiers
	3.5.1. Deterministic Ordering

	3.6. Authoring
	3.6.1. Author Identifiers
	3.6.2. Authoring Counter

	3.7. Confidentiality
	3.7.1. Encrypt-then-Sign
	3.7.2. Sign-then-Encrypt
	3.7.3. Sign-then-Encrypt-then-Sign
	3.7.4. Encrypted Extent Parts

	3.8. Minimum Supported Algorithms
	3.8.1. Hash Functions
	3.8.2. Public/Private Key Pairs
	3.8.3. Asymmetric Signature Algorithm
	3.8.3.1. Relation to Author Identifier Hash
	3.8.3.2. Relation to Signature Hash

	3.8.4. Message Authentication Codes
	3.8.5. Symmetric Encryption
	3.8.6. Signature Algorithm
	3.8.7. Nonce Generation
	3.8.7.1. Nonce Use

	4. Related Considerations
	4.1. Human Rights Considerations
	4.1.1. In Scope
	4.1.2. Out of Scope

	4.2. Protocol Considerations
	4.3. Security Considerations
	4.3.1. Confidentiality
	4.3.2. Data Integrity
	4.3.3. Peer Entity Authentication
	4.3.4. Non-Repudiation
	4.3.5. Unauthorized Usage
	4.3.6. Inappropriate Usage
	4.3.7. Denial of Service
	4.3.8. Replay Attacks
	4.3.9. Message Insertion
	4.3.10. Message Deletion
	4.3.11. Message Modification
	4.3.12. Man-In-The-Middle
	4.3.13. Key Usage

	4.4. Privacy Considerations
	4.4.1. Surveillance
	4.4.2. Stored Data Compromise
	4.4.3. Intrusion
	4.4.4. Misattribution
	4.4.5. Correlation
	4.4.6. Identification
	4.4.7. Secondary Use
	4.4.8. Disclosure
	4.4.9. Exclusion

	4.5. IANA Considerations

	5. References
	5.1. Normative References
	5.2. Informative References

	Acknowledgments
	Index
	Author's Address

