
CAProck Distributed Authorization Scheme

Abstract
CAProck is a distributed authorization scheme based on cryptographic capabilities

. This document describes the schemes additional
constraints over the base document, and introduces a method for dealing with revocation of
authorization. The result is a complete distributed authorization scheme.

Workgroup:
Internet-Draft:
Published:
Intended Status:
Expires:
Author:

Interpeer Project
draft-jfinkhaeuser-caprock-auth-scheme-00
14 June 2023
Informational
16 December 2023
J. Finkhaeuser
Interpeer

[I-D.draft-
jfinkhaeuser-caps-for-distributed-auth]

This document is currently not, in this form, submitted as an Internet-Draft. Any statements
below that suggest this and assign copyright to the IETF are automatically added boilerplate and
should be ignored. This notice will be removed if submission occurred.

About This Document
This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at . Status information for
this document may be found at

.

Discussion of this document takes place on the interpeer Working Group mailing list
(), which is archived at

. Subscribe at . Working Group
information can be found at .

Source for this draft and an issue tracker can be found at .

The RFC Editor will remove this note

https://specs.interpeer.io/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-caprock-auth-

scheme/

mailto:interpeer@lists.interpeer.io https://lists.interpeer.io/pipermail/
interpeer/ https://lists.interpeer.io/mailman/listinfo/interpeer

https://interpeer.io/

https://codeberg.org/interpeer/specs

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .https://datatracker.ietf.org/drafts/current/

Finkhaeuser Expires 16 December 2023 Page 1

https://specs.interpeer.io/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-caprock-auth-scheme/
https://datatracker.ietf.org/doc/draft-jfinkhaeuser-caprock-auth-scheme/
mailto:interpeer@lists.interpeer.io
https://lists.interpeer.io/pipermail/interpeer/
https://lists.interpeer.io/pipermail/interpeer/
https://lists.interpeer.io/mailman/listinfo/interpeer
https://interpeer.io/
https://codeberg.org/interpeer/specs
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 December 2023.

Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

This document may not be modified, and derivative works of it may not be created, except to
format it for publication as an RFC or to translate it into languages other than English.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions and Definitions

2.1. Terminology

2.2. Use Case

3. CAProck

3.1. Identifiers

3.1.1. Object Identifiers

3.1.2. Group Identifiers

3.2. Predicates

3.3. Claims

3.3.1. Wildcards

3.4. Metadata

3.4.1. Validity Range/Temporal Scope

3.4.2. Expiry Policy

3.4.3. Signature

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 2

https://trustee.ietf.org/license-info

3.5. Grants and Revocations

3.5.1. Conflict Resolution

3.6. Confidentiality

3.7. Delegation

4. Related Considerations

4.1. Human Rights Considerations

4.1.1. In Scope

4.1.2. Out of Scope

4.2. Protocol Considerations

4.3. Security Considerations

4.3.1. Confidentiality

4.3.2. Message Deletion

4.4. IANA Considerations

5. References

5.1. Normative References

5.2. Informative References

Acknowledgments

Index

Author's Address

1. Introduction
CAProck addresses distributed authorization by providing a framework for applications to define
and verify their own privilege schemes via cryptographic capabilities.

Capabilities in essence provide cryptographic verification for an authorization tuple, and thus
confirm a relationship between a subject, a prilege, and an optional object. The privilege itself is
an opaque piece of information for this scheme; it only has application defined meaning.

As such, CAProck can be viewed as a kind of envelope for distributed authorization schemes. To
do this, however, this document needs to define some constraints for identifiers used in this
scheme.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 3

Not in scope of this document are wire encodings (serialization formats) for capabilities. This is
because different applications may have differing requirements, making one kind of encoding
more suitable than the other.

2. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

In order to respect inclusive language guidelines from and
, this document uses plural pronouns.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[NIST.IR.8366] [I-D.draft-knodel-
terminology-10]

Claim:

Predicate:

Issuer:

Token:

Grant:

Revocation:

2.1. Terminology
Most terminology is taken from , in
which elements of a cryptographic, distributed authorization scheme are listed. Below are
alternative names for some of those elements as used in CAProck.

In CAProck, authorization tuples are called a claim, because by presenting them, a claim
is made about the relationship of its elements. The tuple consists of a subject identifier, a
predicate, and an object identifier.

Where the overview draft above speaks about privileges, CAProck uses the more
general predicate term. This is terminology from to indicate that a predicate can itself
be arbitrarily complex, though for authorization purposes must describe some permission
relationship.

The grantee role described in the more general document is called the issuer in
CAProck, for consistency with terminology from .

Furthermore, CAProck defines the following terms:

A token is a serialized capability, as passed over the network. Specific serialization
formats are out of scope for this document, but two tokens serialized in different formats but
with identical contents be considered equivalent.

A grant is a token that makes claims about granting some permissions.

Conversely, a revocation makes claims about revoking some permissions.

[I-D.draft-jfinkhaeuser-caps-for-distributed-auth], Section 2

[RDF]

[X.509]

MUST

2.2. Use Case
CAProck was designed with a 0-RTT handshake in mind that establishes authorization for some
resource. This scenario is adequately described in

.
[I-D.draft-jfinkhaeuser-caps-for-distributed-

auth]

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 4

https://datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-00#section-2

Suffice to add that a 0-RTT handshake over IP requires that authentication information as well as
a caprock token be transmitted in a single packet. That in turn requires the data to be
transmitted, and the encoding used on the wire, to be as sparse as feasible.

Where possible, CAProck uses compact data representations for this reason. However, as wire
encodings are not in scope for this document, this is mostly discussed in the abstract.

Furthermore, CAProck is designed with a fully distributed system in mind. The basic assumption
is that an issuer of a capability cannot be used at the time the capability is to be verified.

3. CAProck
The basic functionality of CAProck is to provide a cryptographic signature over a number of
claims with the intent that it can be verified at a later date, when actions based on those claims
are to be performed.

This temporal decouping between the time of signature and time of verification represents both
the greatest strength and weakness of capability based schemes, as it raises the question for what
time period these claims are to be considered valid. Rare is the case where a privilege should be
granted to a subject for perpetuity, but choose the time period too small, and a claim may not be
usable.

Furthermore, this temporal decoupling introduces the issue of what should happen when a
privilege is granted and the associated capability transmitted, but subsequently trust in the
subject is lost. This loss of trust should ideally be known to the party that is supposed to execute
an action on behalf of the subject.

The typical approach is to verify via some real-time blocklist query. However, the design goals for
CAProck prohibit such an approach. Note, however, that systems using CAProck may still employ
this method. The requirement is included to drive the design to broader applicability also in
situations where real-time queries are infeasible.

To these ends, CAProck defines additional metadata beyond that described in
, namely:

A validity timespan (scope)
An expiry policy
Grant as well as revocation markers

Furthermore, this document defines a conflict resolution scheme for resolving multiple
capabilities.

[I-D.draft-
jfinkhaeuser-caps-for-distributed-auth]

•
•
•

3.1. Identifiers
Generally speaking, a capability based distributed authorization scheme is agnostic to the
specific contents of identifiers used for the capability issuer, subject and object. However, such a
scheme requires that issuer and subject identifiers can be uniquely mapped to public keys.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 5

SHA-3 Identifiers:

Raw Identifiers:

The issuer public key is required to verify the capability signature. At the same time, accepting
and executing an action requires that the capability subject is authenticated, which typically
involves use of its public key as well.

The space saving concerns suggest that full public keys should only be used in authentication,
while shorter identifiers derived from these keys are sufficient for use in capabilities. To that
end, CAProck defines two kinds of identifiers for issuers and subjects:

Identifiers may be SHA-3 hashes () over DER encoded ()
public keys.

If the key scheme supports it, identifiers may also be raw public keys. This
identifier be chosen if it is longer than the longest identifier generated under the
SHA-3 scheme for the same key, but be used if the result is shorter than the SHA-3
scheme produces.

Algorithm Identifier Preferred Scheme Reference

PureEdDSA for curve25519 ed25519 raw ,

PureEdDSA for curve448 ed448 raw ,

DSA dsa SHA-3

RSA rsa SHA-3

ECDSA ecdsa SHA-3

Table 1: Identifier Schemes

[NIST.FIPS.202] [X.690]

MUST NOT
SHOULD

[RFC8410] [RFC8032]

[RFC8410] [RFC8032]

[NIST.FIPS.186-4]

[NIST.FIPS.186-4]

[NIST.FIPS.186-4]

3.1.1. Object Identifiers

Unlike with issuer and subject identifiers, object identifiers do not require mapping to public
keys, though it may be in the application's interest to also define object identifiers in this fashion.

CAProck places only a single constraint on object identifiers: that they have the same length as
issuer and subject identifiers. More specifically, object identifers be between 28 and 64
octets in length, and be one of the sizes yielded by either of the issuer and subject
identifier schemes.

In practice, this constraint suggests to use a default SHA-3 digest size for identifiers of any kind,
unless the use of EdDSA allows shorter issuer or subject identifiers.

MUST
SHOULD

3.1.2. Group Identifiers

As CAProck does not define much about identifiers, it is also agnostic as to whether any identifier
refers to an individual or group. Such definitions are part of the application concern.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 6

Note, however, that as subject and issuer identifiers must be mappable to a public key, the use of
groups with a CAProck based scheme essentially becomes a public key management problem.

3.2. Predicates
Predicate formats are outside of the scope of this document. This is to permit maximum
flexibility for the application concern.

However, arbitrary length predicates are in conflict with the space saving requirements, while
short predicates may limit the application in how to apply them.

CAProck takes a compromise approach here: predicates be larger than 2^16 = 65,536
octets. This limit is far too generous for 0-RTT handshakes, so predicates be limited to
significantly shorter lengths, such that an entire capability fits comfortably into an IP packet with
authentication information.

MUST NOT
SHOULD

3.3. Claims
CAProck's capabilities require that one or more claims are provided to create them, i.e. tuples of
subject identifier and predicate, and an optional object identifier.

Note that a claim that includes an object identifier has a signficantly different semantic from one
that does not.

Authorization tuples with an object identifier assert that the predicate describes the
relationship between the given subject and object.
Authorization tuples without an object assert that the predicate describes an aspect of the
subject itself.

1.

2.

3.3.1. Wildcards

Furthermore, in CAProck each claim component may be a wildcard. As predicate formats are
outside of this document's scope, predicates may also contain a wildcard, but the semantics of
that must be defined with the predicate scheme to use.

Wildcards make more general statements than a claim typically does, and due to this genericity,
implementations take great care with their use. Broadly speaking:

A wildcard subject states that the predicate applies to an object for any subject. Such a
statement may imply that authenticating a subject is no longer of interest, i.e. grant public
privileges.
A wildcard predicate states that all relationships between the given subject and object are
affected. This may e.g. be used to revoke all privileges from a subject.
A wildcard object is not the same as omitting an object altogether; instead, it states that the
subject and predicate combination applies to all objects. Note, though, that the issuer does
not have authority over all possible objects, so this is naturally limited to only those objects
the issuer has authority over.

MUST

1.

2.

3.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 7

Combinations of wildcard fields in a single claim may have sense within the application's
privilege scheme, but can also be increasingly confusing, and thus prone to creating security
flaws. For that reason, public privilege schemes document the semantics for every
combination of wildcard elements they support, and limit such combinations to a
minimum required amount. Other combinations of wildcards be rejected as invalid.

MUST
SHOULD

SHOULD

3.4. Metadata
The most basic data encoded into a CAProck token is mostly described in

 and consists of the following fields:

An issuer identifier (also see Section 3.1).
One or more claims (Section 3.3), each consisting of:

A subject identifier (Section 3.1).
A predicate (Section 3.2).
An optional object identifier (Section 3.1.1).

A validity range (Section 3.4.1).
An expiry policy (Section 3.4.2).
A signature by the issuer over a serialized version of the previous fields (Section 3.4.3).

Please note that the specific encoding or serialization format for the data affected by the
signature is not defined in this document; this is because alternative encodings are possible. For
this reason, documents specifying such encodings be clear on how this payload data is
serialized, and how the signature is added to the token.

[I-D.draft-jfinkhaeuser-
caps-for-distributed-auth]

1.
2.

1.
2.
3.

3.
4.
5.

MUST

3.4.1. Validity Range/Temporal Scope

The validty range or temporal scope for a token is defined by a tuple of timestamps, much as in
 certificates. In these certificates, the validity range is defined by rather awkwardly named

"not before" and "not after" fields, CAProck prefers the "from" and "to" fields.

The "from" timestamp be provided, while the "to" timestamp is optional. Tokens without
the "to" timestamp are valid in perpetuity, after the "from" time has been reached.

The range from "from" to "to" is inclusive, i.e. the token is valid not before the "from" date, but
both at and after the "from" timestamp. The same logic applies to the "to" timestamp.

The wire encoding specifies how to represent these fields in the token. However,
implementations accept the subset of ISO-8601 time stamp formats as defined in
as input to either field, in order to set consistent expectations with the user base.

[X.509]

MUST

MUST [RFC3339]

3.4.2. Expiry Policy

Distributed authorization in general and CAProck in particular are designed for scenarios in
which connectivity is not always given. This can mean that having a access to a synchronized
clock is impossible at the time of validation, which would imply that evaluating the valdity range
timestamps above is impossible.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 8

Issuer:

Local:

To mitigate this, tokens contain an optional expiry policy field. This field can take the
symbolic values of issuer and local. If omitted, the value be assumed to be issuer. The
semantics of each value are as follows:

If the expiry policy is set to issuer, then the valdity scope of the issuer be
respected. An unsynchronize clock may lead to failures, but that is the issuer's wish.

The verifier is permitted to apply local policies for failures. That is, a CAProck system
must now query the application whether to accept or reject a token.

Leaving the possibility to defer to the applications permits resolving clock conflicts by means
outside the ability of CAProck to influence. One such method might be to simply ask the
application user.

As this behaviour is a potential security risk, implementations reject tokens with local expiry
policy outright.

MAY
MUST

MUST

MAY

3.4.3. Signature

Asymmetric signatures are made over hashes of content; the hash algorithm to use depends on
the key type used for signing.

The EdDSA algorithm defines what signature hash function to use in .
The DSA algorithm requires the selection of a hashing algorithm. Implementations use
one of the SHA-2 or SHA-3 family of hash functions (see).
The ECDSA algorithm likewise requires the selection of a hashing algorithm. We also use
SHA-2 or SHA-3 here. For ECDSA, specifies that the hash length shall be no
less than the ECDSA key bit length.
The RSA algorithm also requires specification of a signature hash. Implementations
select one of the SHA-3 family of hash functions (see).

CAProck does not specify which digest sizes to use for SHA-2/SHA-3. However, wire encodings
may restrict the choices here further.

• [RFC8032]
• MUST

[NIST.FIPS.180-4]
•

[NIST.FIPS.180-4]

• MUST
[NIST.FIPS.202]

3.5. Grants and Revocations
Capabilities in CAProck either grant privileges or revoke them; these are called grants or grant
tokens and revocations or revocation tokens, respectively. As each token contains one or more
claims, the implication is that each token either grants all of the claimed privilege or revokes all.

Other metadata (see Section 3.4) applies equally to the entire set of claims. But individual tokens
may contain differing metadata. If the metadata differs, this can create a set a tokens that make
conflicting claims.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 9

Consider the following scenario:

Grant G1 contains claims C1 and C2 for a period of [S1,E1] defined by a start S1 and end
E1 timestamp.

Revocation R1 revokes claim C1 for a new, shorter time period [S2,E2] where S2 > S1
and E2 < E1.

In this simple scenario, whether C1 is granted or revoked already depends on whether one looks
at time period [S1,S2), [S1,E2] or (E2,E1] - or some period before S1 or after E1.

If the two tokens are examined in the order listed, that is all there is to it. However, what should
happen if the tokens arrive in reverse order? For this, we need to define a conflict resolution
algorithm (Section 3.5.1).

Things only gain in complexity when more claims are processed, and revocations are themselves
further "revoked" by issuing another grant for a different time period.

1.

2.

3.5.1. Conflict Resolution

While privileges encoded in predicates are arbitrarily complex, whether a token represents a
grant or revocation is essentially a binary value. It is therefore possible to view a set of grants
and revocatons for a given claim as a bit stream, in which only the latest bit has any significance.
The question then is how to bring order into this token set.

To this end, CAProck introduces a simple counter. This is represented by an unsigned 64 bit
integer value. The only requirement on the counter is that tokens issued earlier have smaller
values than tokens issued at a later date. The counter value is scoped to the issuer that issues the
token; therefore, no synchronization of counters between issuers is required.

In order to query the validity of a claim, then, a time point must be provided, and the following
algorithm be used:

Start with the state that the claim is invalid.
Assume a token store containing only tokens with valid cryptographic signatures.
From the token store, pick all tokens pertaining to the claim being queried. Note that this
may include claims containing wildcards.
Order the picked tokens by the counter value from lowest value to highest value, essentially
ordering by age of the token.
Process each token in order, and compare it's validity range to the given time point:

Discard tokens for which the time point does not lie in the validity range.

If the token expiry policy is local, consult the local policy whether to discard it. See
section Section 3.4.2 for details.

If the time point lies in the validity range, set the current state to valid for grants, and
invalid for revocations.

MUST

1.
2.
3.

4.

5.

1.

1.

2.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 10

When all tokens are processed, the current state is the final state of processing. If that state is
invalid, reject the claim.
For valid end states, process the claim by application specified rules for the predicate. The
information contained here may still make the claim invalid, but this is beyond the scope of
CAProck.

Note that CAProck explicitly does not introduce timestamps for ordering tokens. This is due to
several considerations.

First, using a counter permits an implementation to update the value more sparsely. Between
issuing two tokens, a lot of time may pass, which would increment a timestamp by a significant
number. By contrast, a counter may use the value space more efficiently by being incremented
only by one each time.

Second, the extra information a timestamp imparts is not necessary for deconflicting tokens.
However, it is possible to infer information from it that may best be hidden, namely when the
token was issued. This permits for analysis on the time periods an issuer was active, and may
imply further communications between the issuer and subject.

Finally, using timestamps introduces a hard dependency on a valid understanding of the current
time for validation. In early boot processes or handshakes for reading a clock, such a
dependency cannot necessarily be fulfilled.

6.

7.

3.5.1.1. State Compression
The above algorithm makes it possible to compress state. First, any expired tokens can be
discarded, as they are no longer consulted at all. They have the same semantics as a revocation
for the claim.

Furthermore, subsequent tokens that completely overrule a prior token make it unnecessary to
keep storing the prior token.

Implementations are not required to perform any state compression, and find additional
means to compress state. However, such compressions affect the results as would be
achieved by the above algorithm.

MAY
MUST NOT

3.6. Confidentiality
All of the data fields described here are required for a party validating a capability or a set
thereof; therefore, CAProck cannot provide confidentiality for this data itself.

However, individual permissions may well be in need of protection. If any subject is issued a
privilege, this should not be visibly to any party other than the issuer, the verifier, and most likely
the subject itself.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 11

Implementations therefore transport capability tokens in such a way that confidentiality
is preserved. This leaves room for potentially replacing the cryptographic signature with an
authenticated encryption method. Such a scheme, however, should be considered an extension to
CAProck and defined in a separate document.

SHOULD

3.7. Delegation
Delegation of authority comes in two distinct flavors in a distributed authorization system.
CAProck addreses the set of scenarios in which a subject wishes to perform an action (on an
object), and presents its authorization to do so.

The other set of scenarios involves delegating the authority to grant priveleges. This is not
explicitly addressed in CAProck, though the following may provide some guidance.

First, a predicate that states a subject may itself create subgrants is likely more complex than
predicates permitting other actions. At minimum, such a predicate should provide limits on
which subgrants may be issued; such limits may include a list of permitted predicates, different
time slots for the subgranted privilege, and a limit on whether grants or revocations or both may
be issued. Effectively, such a predicate might contain the same information as a CAProck token,
or even more.

Second, a subgrant may also be issued to grant further subgrants. If this is the case, there is likely
need for bounding such subsubgrants to a certain depth, otherwise it is likely that subjects
receive grants that the original issuer never intended to issue grants to.

4. Related Considerations

4.1. Human Rights Considerations
 contains a list of objectives derived from

, each with a statement on how these concerns are addressed. This section lists any
modifications or additions to that list that is specific to CAProck.

[I-D.draft-jfinkhaeuser-caps-for-distributed-auth]
[RFC8280]

Content agnosticism:

Localization:

4.1.1. In Scope

Where the base document is entirely content agnostic, CAProck restricts
this to content agnosticism about predicates. Without such a restriction, CAProck would not
be able to add signficant semantics to the base document.

This document refers to time in timestamps in order to provide
timestamps unambiguous in any locale.

[RFC3339]

Confidentiality:

4.1.2. Out of Scope

Confidentiality remains out of scope, but see Section 3.6 for some additional
considerations.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 12

4.2. Protocol Considerations
There are no additional protocol considerations for this document.

4.3. Security Considerations
This document does not specify a network protocol. In fact, it deliberately requires no specific
protocol for transmitting capabilities. As such, much of does not apply.

Similar to Section 4.1, below we list changes to the base document at
.

[BCP72]

[I-D.draft-jfinkhaeuser-caps-
for-distributed-auth]

4.3.1. Confidentiality

As above, confidentiality is out of scope, but see Section 3.6.

4.3.2. Message Deletion

Deletion of individual tokens in a ordered stream relating to the same claim may result in the
wrong verification state at the end of the algorithm presented in Section 3.5.1. Mitigation against
this boils down to knowing that the full set of tokens has been communicated that an issuer
generated for a given claim.

It is possible to use CAProck in this fashion, but this document assumes other uses are equally
valid. To provide mitigation against message deletion, follow the steps below:

Start issuer counters at some fixed value, e.g. 0, and strictly increment the counter by one for
each token issued.
Only provide exactly one claim per token.
Communicate the last counter issued as part of the token transmission. Validate this by
means out of scope for this document.

Given the above information, a recipient of a token set can be certain that they know the full set
of tokens, at the point in time when the token set was sent. If the transmission of the token set is
synchronous, this corresponds to the point in time at which a claim is checked for validity.

However, these additional assumptions counter some of the gains for distributed systems, to the
point where a traditional, centralized authorization scheme may be the better choice. It therefore
depends strongly on the threat model and application requirements whether to use centralized
authorization, distributed authorization, or a mixed model as outlined above.

1.

2.
3.

4.4. IANA Considerations
This document has no IANA actions.

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 13

[BCP72]

[I-D.draft-jfinkhaeuser-caps-for-distributed-auth]

[NIST.FIPS.180-4]

[NIST.FIPS.186-4]

[NIST.FIPS.202]

[NIST.IR.8366]

[RFC2119]

[RFC3339]

[RFC8032]

[RFC8174]

5. References

5.1. Normative References

 and ,
, , , , July 2003,

.

 and ,
, ,

, 5 December 2022,
.

, ,
, , July 2015,

.

,
, , July 2013,

.

,
, ,

, July 2015, .

, , , , , , ,
, , , , and ,

,
, ,

April 2021, .

, , ,
, , March 1997,
.

 and , ,
, , July 2002,

.

 and ,
, , , January 2017,

.

, ,
, , , May 2017,

.

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/info/rfc3552>

Finkhäuser, J. S. P. ISEP "Capabilities
for Distributed Authorization" Work in Progress Internet-Draft, draft-
jfinkhaeuser-caps-for-distributed-auth-00 <https://
datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-00>

Dang, Q. "Secure Hash Standard" National Institute of Standards and
Technology report DOI 10.6028/nist.fips.180-4 <https://doi.org/
10.6028/nist.fips.180-4>

"Digital Signature Standard (DSS)" National Institute of Standards and
Technology report DOI 10.6028/nist.fips.186-4 <https://doi.org/
10.6028/nist.fips.186-4>

Dworkin, M. "SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions" National Institute of Standards and Technology report DOI
10.6028/nist.fips.202 <https://doi.org/10.6028/nist.fips.202>

Miller, K. Alderman, D. Carnahan, L. Chen, L. Foti, J. Goldstein, B. Hogan, M.
Marshall, J. Reczek, K. Rioux, N. Theofanos, M. D. Wollman "Guidance for
NIST staff on using inclusive language in documentary standards" National
Institute of Standards and Technology (U.S.) report DOI 10.6028/nist.ir.8366

<https://doi.org/10.6028/nist.ir.8366>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/info/rfc8032>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 14

https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-00
https://datatracker.ietf.org/doc/html/draft-jfinkhaeuser-caps-for-distributed-auth-00
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.180-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.ir.8366
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8280]

[RFC8410]

[X.690]

[I-D.draft-knodel-terminology-10]

[ISOC-FOUNDATION]

[RDF]

[X.509]

claim
claims

grant

 and ,
, , , October 2017,

.

 and ,
, ,

, August 2018, .

,

,
, 1994.

5.2. Informative References

 and ,
, ,

, 11 July 2022,
.

, , ,
.

,
, 25 February 2014,

.

,

, , , March 2000.

Index

Section 2.1, Paragraph 2.2.1
Section 3, Paragraph 1

Section 2.1, Paragraph 4.4.1

ten Oever, N. C. Cath "Research into Human Rights Protocol
Considerations" RFC 8280 DOI 10.17487/RFC8280 <https://
www.rfc-editor.org/info/rfc8280>

Josefsson, S. J. Schaad "Algorithm Identifiers for Ed25519, Ed448, X25519,
and X448 for Use in the Internet X.509 Public Key Infrastructure" RFC 8410 DOI
10.17487/RFC8410 <https://www.rfc-editor.org/info/rfc8410>

International Telecommunications Union "Information Technology - ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER)" ITU-T Recommendation X.
690

Knodel, M. N. ten Oever "Terminology, Power, and
Inclusive Language in Internet-Drafts and RFCs" Work in Progress Internet-
Draft, draft-knodel-terminology-10 <https://datatracker.ietf.org/
doc/html/draft-knodel-terminology-10>

Internet Society Foundation "Internet Society Foundation" n.d. <https://
www.isocfoundation.org/>

RDF Working Group of the World Wide Web Consortium (W3C) "RDF 1.1
Concepts and Abstract Syntax" <https://www.w3.org/TR/rdf11-
concepts/>

International Telecommunications Union "Information technology - Open
Systems Interconnection - The Directory: Public-key and attribute certificate
frameworks" ITU-T Recommendation X.509 ISO Standard 9594-8

Acknowledgments
Jens Finkhäuser's authorship of this document was performed as part of work undertaken under
a grant agreement with the Internet Society Foundation .[ISOC-FOUNDATION]

C G I P R T

C

G

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 15

https://www.rfc-editor.org/info/rfc8280
https://www.rfc-editor.org/info/rfc8280
https://www.rfc-editor.org/info/rfc8410
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-10
https://www.isocfoundation.org/
https://www.isocfoundation.org/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

issuer

predicate

revocation

token

Section 2.1, Paragraph 2.6.1

Section 2.1, Paragraph 2.4.1

Section 2.1, Paragraph 4.6.1

Section 2.1, Paragraph 4.2.1

I

P

R

T

Author's Address
Jens Finkhäuser
Interpeer gUG (haftungsbeschraenkt)

ietf@interpeer.ioEmail:
https://interpeer.io/URI:

Internet-Draft CAProck Distributed Authorization Scheme June 2023

Finkhaeuser Expires 16 December 2023 Page 16

mailto:ietf@interpeer.io
https://interpeer.io/

	CAProck Distributed Authorization Scheme
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	2.1. Terminology
	2.2. Use Case

	3. CAProck
	3.1. Identifiers
	3.1.1. Object Identifiers
	3.1.2. Group Identifiers

	3.2. Predicates
	3.3. Claims
	3.3.1. Wildcards

	3.4. Metadata
	3.4.1. Validity Range/Temporal Scope
	3.4.2. Expiry Policy
	3.4.3. Signature

	3.5. Grants and Revocations
	3.5.1. Conflict Resolution
	3.5.1.1. State Compression

	3.6. Confidentiality
	3.7. Delegation

	4. Related Considerations
	4.1. Human Rights Considerations
	4.1.1. In Scope
	4.1.2. Out of Scope

	4.2. Protocol Considerations
	4.3. Security Considerations
	4.3.1. Confidentiality
	4.3.2. Message Deletion

	4.4. IANA Considerations

	5. References
	5.1. Normative References
	5.2. Informative References

	Acknowledgments
	Index
	Author's Address

